Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_onnxruntime
Commits
78e355fd
Commit
78e355fd
authored
Dec 20, 2022
by
gaoqiong
Browse files
onnxruntime
parent
fae08684
Pipeline
#494
failed with stages
in 0 seconds
Changes
358
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1517 additions
and
0 deletions
+1517
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r2.hpp
...ion/gpu/block/thread_group_tensor_slice_transfer_v6r2.hpp
+158
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp
...ion/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp
+183
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
...ation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
+172
-0
include/ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp
...n/gpu/device/convolution_backward_data_specialization.hpp
+30
-0
include/ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp
...gpu/device/convolution_backward_weight_specialization.hpp
+33
-0
include/ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp
...eration/gpu/device/convolution_forward_specialization.hpp
+34
-0
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+74
-0
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp
...tion/gpu/device/device_batched_contraction_multiple_d.hpp
+64
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
+68
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_e_permute.hpp
...or_operation/gpu/device/device_batched_gemm_e_permute.hpp
+50
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
.../tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
+59
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp
...nsor_operation/gpu/device/device_batched_gemm_multi_d.hpp
+58
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
...device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
+72
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
...operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
+60
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
+70
-0
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
...tensor_operation/gpu/device/device_batchnorm_backward.hpp
+77
-0
include/ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp
.../tensor_operation/gpu/device/device_batchnorm_forward.hpp
+72
-0
include/ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
...ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
+69
-0
include/ck/tensor_operation/gpu/device/device_cgemm.hpp
include/ck/tensor_operation/gpu/device/device_cgemm.hpp
+51
-0
include/ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp
...or_operation/gpu/device/device_contraction_multiple_d.hpp
+63
-0
No files found.
Too many changes to show.
To preserve performance only
358 of 358+
files are displayed.
Plain diff
Email patch
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r2.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r2.hpp"
namespace
ck
{
// this version does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray instead of C array for thread buffer
// 2. It does not keep reference to tensor descriptor
// 3. Run() does not construct new tensor coordinate
template
<
typename
ThreadGroup
,
typename
ElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
SliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
Src0Data
,
typename
Src1Data
,
typename
DstData
,
typename
Src0Desc
,
typename
Src1Desc
,
typename
DstDesc
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
bool
ThreadTransferSrc0ResetCoordinateAfterRun
,
bool
ThreadTransferSrc1ResetCoordinateAfterRun
,
bool
ThreadTransferDstResetCoordinateAfterRun
>
struct
ThreadGroupTensorSliceTransfer_v6r2
{
static
constexpr
index_t
nDim
=
remove_reference_t
<
Src0Desc
>::
GetNumOfDimension
();
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
using
Index
=
MultiIndex
<
nDim
>
;
__device__
constexpr
ThreadGroupTensorSliceTransfer_v6r2
(
const
Src0Desc
&
src0_desc
,
const
Index
&
src0_block_slice_origin
,
const
Src1Desc
&
src1_desc
,
const
Index
&
src1_block_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
,
const
ElementwiseOperation
&
element_op
)
:
threadwise_transfer_
(
src0_desc
,
make_zero_multi_index
<
nDim
>
(),
src1_desc
,
make_zero_multi_index
<
nDim
>
(),
dst_desc
,
make_zero_multi_index
<
nDim
>
(),
element_op
)
{
static_assert
(
nDim
==
remove_cvref_t
<
Src0Desc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
Src1Desc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
DstDesc
>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
DimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
SliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
threadwise_transfer_
.
SetSrc0SliceOrigin
(
src0_desc
,
src0_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetSrc1SliceOrigin
(
src1_desc
,
src1_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
thread_data_idx_begin
);
}
}
template
<
typename
Src0Buffer
,
typename
Src1Buffer
,
typename
DstBuffer
>
__device__
void
Run
(
const
Src0Desc
&
src0_desc
,
const
Src0Buffer
&
src0_buf
,
const
Src1Desc
&
src1_desc
,
const
Src1Buffer
&
src1_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
Run
(
src0_desc
,
src0_buf
,
src1_desc
,
src1_buf
,
dst_desc
,
dst_buf
);
}
}
__device__
void
MoveSrc0SliceWindow
(
const
Src0Desc
&
src0_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrc0SliceWindow
(
src0_desc
,
step
);
}
}
__device__
void
MoveSrc1SliceWindow
(
const
Src1Desc
&
src1_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrc1SliceWindow
(
src1_desc
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_desc
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v6r2
<
Src0Data
,
Src1Data
,
DstData
,
Src0Desc
,
Src1Desc
,
DstDesc
,
ElementwiseOperation
,
decltype
(
thread_slice_lengths
),
DimAccessOrder
,
VectorDim
,
ScalarPerVector
,
DstInMemOp
,
ThreadTransferSrc0ResetCoordinateAfterRun
,
ThreadTransferSrc1ResetCoordinateAfterRun
,
ThreadTransferDstResetCoordinateAfterRun
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r3.hpp"
namespace
ck
{
// this version does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray instead of C array for thread buffer
// 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
// 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
template
<
typename
ThreadGroup
,
typename
ElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
SliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
Src0Data
,
typename
Src1Data
,
typename
Src2Data
,
typename
DstData
,
typename
Src0Desc
,
typename
Src1Desc
,
typename
Src2Desc
,
typename
DstDesc
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
bool
ThreadTransferSrc0ResetCoordinateAfterRun
,
bool
ThreadTransferSrc1ResetCoordinateAfterRun
,
bool
ThreadTransferSrc2ResetCoordinateAfterRun
,
bool
ThreadTransferDstResetCoordinateAfterRun
>
struct
ThreadGroupTensorSliceTransfer_v6r3
{
static
constexpr
index_t
nDim
=
remove_reference_t
<
Src0Desc
>::
GetNumOfDimension
();
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
using
Index
=
MultiIndex
<
nDim
>
;
__device__
constexpr
ThreadGroupTensorSliceTransfer_v6r3
(
const
Src0Desc
&
src0_desc
,
const
Index
&
src0_block_slice_origin
,
const
Src1Desc
&
src1_desc
,
const
Index
&
src1_block_slice_origin
,
const
Src2Desc
&
src2_desc
,
const
Index
&
src2_block_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
,
const
ElementwiseOperation
&
element_op
)
:
threadwise_transfer_
(
src0_desc
,
make_zero_multi_index
<
nDim
>
(),
src1_desc
,
make_zero_multi_index
<
nDim
>
(),
src2_desc
,
make_zero_multi_index
<
nDim
>
(),
dst_desc
,
make_zero_multi_index
<
nDim
>
(),
element_op
)
{
static_assert
(
nDim
==
remove_cvref_t
<
Src0Desc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
Src1Desc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
Src2Desc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
DstDesc
>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
DimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
SliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
threadwise_transfer_
.
SetSrc0SliceOrigin
(
src0_desc
,
src0_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetSrc1SliceOrigin
(
src1_desc
,
src1_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetSrc2SliceOrigin
(
src2_desc
,
src2_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
thread_data_idx_begin
);
}
}
template
<
typename
Src0Buffer
,
typename
Src1Buffer
,
typename
Src2Buffer
,
typename
DstBuffer
>
__device__
void
Run
(
const
Src0Desc
&
src0_desc
,
const
Src0Buffer
&
src0_buf
,
const
Src1Desc
&
src1_desc
,
const
Src1Buffer
&
src1_buf
,
const
Src2Desc
&
src2_desc
,
const
Src2Buffer
&
src2_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
Run
(
src0_desc
,
src0_buf
,
src1_desc
,
src1_buf
,
src2_desc
,
src2_buf
,
dst_desc
,
dst_buf
);
}
}
__device__
void
MoveSrc0SliceWindow
(
const
Src0Desc
&
src0_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrc0SliceWindow
(
src0_desc
,
step
);
}
}
__device__
void
MoveSrc1SliceWindow
(
const
Src1Desc
&
src1_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrc1SliceWindow
(
src1_desc
,
step
);
}
}
__device__
void
MoveSrc2SliceWindow
(
const
Src2Desc
&
src2_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrc2SliceWindow
(
src2_desc
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_desc
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v6r3
<
Src0Data
,
Src1Data
,
Src2Data
,
DstData
,
Src0Desc
,
Src1Desc
,
Src2Desc
,
DstDesc
,
ElementwiseOperation
,
decltype
(
thread_slice_lengths
),
DimAccessOrder
,
VectorDim
,
ScalarPerVector
,
DstInMemOp
,
ThreadTransferSrc0ResetCoordinateAfterRun
,
ThreadTransferSrc1ResetCoordinateAfterRun
,
ThreadTransferSrc2ResetCoordinateAfterRun
,
ThreadTransferDstResetCoordinateAfterRun
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7.hpp"
namespace
ck
{
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template
<
typename
ThreadGroup
,
typename
SrcDatas
,
typename
DstDatas
,
typename
SrcDescs
,
typename
DstDescs
,
typename
ElementwiseOperation
,
typename
DstInMemOps
,
// Sequence<InMemoryDataOperationEnum ...>
typename
SliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
typename
ThreadTransferSrcResetCoordinateAfterRunFlags
,
typename
ThreadTransferDstResetCoordinateAfterRunFlags
>
struct
ThreadGroupTensorSliceTransfer_v7
{
static
constexpr
index_t
nDim
=
remove_cvref_t
<
tuple_element_t
<
0
,
SrcDescs
>>::
GetNumOfDimension
();
static
constexpr
index_t
nSrc
=
remove_cvref_t
<
SrcDescs
>::
Size
();
static
constexpr
index_t
nDst
=
remove_cvref_t
<
DstDescs
>::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
__device__
constexpr
ThreadGroupTensorSliceTransfer_v7
(
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_block_slice_origins
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_block_slice_origins
,
const
ElementwiseOperation
&
element_op
)
:
threadwise_transfer_
(
src_descs
,
StaticallyIndexedArray
<
Index
,
nSrc
>
{},
dst_descs
,
StaticallyIndexedArray
<
Index
,
nDst
>
{},
element_op
)
{
static_assert
(
nSrc
==
SrcDatas
::
Size
()
&&
nSrc
==
SrcDescs
::
Size
()
&&
nSrc
==
ThreadTransferSrcResetCoordinateAfterRunFlags
::
Size
()
&&
nDst
==
DstDatas
::
Size
()
&&
nDst
==
DstDescs
::
Size
()
&&
nDst
==
ThreadTransferDstResetCoordinateAfterRunFlags
::
Size
(),
"wrong!"
);
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
SrcDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
static_assert
(
nDim
==
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DstDescs
>>::
GetNumOfDimension
(),
"wrong!"
);
});
static_assert
(
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
DimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
SliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
const
auto
src_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
src_block_slice_origins
[
i
]
+
thread_data_idx_begin
;
},
Number
<
nSrc
>
{});
const
auto
dst_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
dst_block_slice_origins
[
i
]
+
thread_data_idx_begin
;
},
Number
<
nDst
>
{});
threadwise_transfer_
.
SetSrcSliceOrigins
(
src_descs
,
src_thread_slice_origins
);
threadwise_transfer_
.
SetDstSliceOrigins
(
dst_descs
,
dst_thread_slice_origins
);
}
}
template
<
typename
SrcBuffers
,
typename
DstBuffers
>
__device__
void
Run
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
Run
(
src_descs
,
src_bufs
,
dst_descs
,
dst_bufs
);
}
}
template
<
index_t
ISrc
>
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
Number
<
ISrc
>
iSrc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_descs
,
iSrc
,
step
);
}
}
template
<
index_t
IDst
>
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
Number
<
IDst
>
iDst
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_descs
,
iDst
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v7
<
SrcDatas
,
DstDatas
,
SrcDescs
,
DstDescs
,
ElementwiseOperation
,
DstInMemOps
,
decltype
(
thread_slice_lengths
),
DimAccessOrder
,
VectorDim
,
ScalarPerVector
,
ThreadTransferSrcResetCoordinateAfterRunFlags
,
ThreadTransferDstResetCoordinateAfterRunFlags
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
enum
struct
ConvolutionBackwardDataSpecialization
{
Default
,
Filter1x1Stride1Pad0
,
};
inline
std
::
string
getConvBackwardDataSpecializationString
(
const
ConvolutionBackwardDataSpecialization
&
s
)
{
switch
(
s
)
{
case
ConvolutionBackwardDataSpecialization
::
Default
:
return
"Default"
;
case
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
:
return
"FFilter1x1Stride1Pad0"
;
default:
return
"Unrecognized specialization!"
;
}
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
enum
struct
ConvolutionBackwardWeightSpecialization
{
Default
,
Filter1x1Stride1Pad0
,
Filter1x1Pad0
,
OddC
,
};
inline
std
::
string
getConvBackwardWeightSpecializationString
(
const
ConvolutionBackwardWeightSpecialization
&
s
)
{
switch
(
s
)
{
case
ConvolutionBackwardWeightSpecialization
::
Default
:
return
"Default"
;
case
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
:
return
"Filter1x1Stride1Pad0"
;
case
ConvolutionBackwardWeightSpecialization
::
Filter1x1Pad0
:
return
"Filter1x1Pad0"
;
case
ConvolutionBackwardWeightSpecialization
::
OddC
:
return
"OddC"
;
default:
return
"Unrecognized specialization!"
;
}
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
enum
struct
ConvolutionForwardSpecialization
{
Default
,
Filter1x1Pad0
,
Filter1x1Stride1Pad0
,
OddC
,
};
inline
std
::
string
getConvForwardSpecializationString
(
const
ConvolutionForwardSpecialization
&
s
)
{
switch
(
s
)
{
case
ConvolutionForwardSpecialization
::
Default
:
return
"Default"
;
case
ConvolutionForwardSpecialization
::
Filter1x1Pad0
:
return
"Filter1x1Pad0"
;
case
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
:
return
"Filter1x1Stride1Pad0"
;
case
ConvolutionForwardSpecialization
::
OddC
:
return
"OddC"
;
default:
return
"Unrecognized specialization!"
;
}
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_base.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cmath>
#include <string>
#include <sstream>
#include "ck/stream_config.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
BaseArgument
{
BaseArgument
()
=
default
;
BaseArgument
(
const
BaseArgument
&
)
=
default
;
BaseArgument
&
operator
=
(
const
BaseArgument
&
)
=
default
;
virtual
~
BaseArgument
()
{}
void
*
p_workspace_
=
nullptr
;
};
struct
BaseInvoker
{
BaseInvoker
()
=
default
;
BaseInvoker
(
const
BaseInvoker
&
)
=
default
;
BaseInvoker
&
operator
=
(
const
BaseInvoker
&
)
=
default
;
virtual
float
Run
(
const
BaseArgument
*
,
const
StreamConfig
&
=
StreamConfig
{})
{
return
float
{
0
};
}
virtual
~
BaseInvoker
()
{}
};
struct
BaseOperator
{
BaseOperator
()
=
default
;
BaseOperator
(
const
BaseOperator
&
)
=
default
;
BaseOperator
&
operator
=
(
const
BaseOperator
&
)
=
default
;
virtual
bool
IsSupportedArgument
(
const
BaseArgument
*
)
{
return
false
;
}
virtual
std
::
string
GetTypeString
()
const
{
return
""
;
}
virtual
std
::
string
GetTypeIdName
()
const
{
return
typeid
(
*
this
).
name
();
}
virtual
std
::
string
GetTypeIdHashCode
()
const
{
std
::
ostringstream
oss
;
oss
<<
std
::
hex
<<
typeid
(
*
this
).
hash_code
();
return
oss
.
str
();
};
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
{
assert
(
p_arg
);
p_arg
->
p_workspace_
=
p_workspace
;
}
virtual
~
BaseOperator
()
{}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceBatchedContractionMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceBatchedGemm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB
,
ck
::
index_t
BatchStrideC
,
ck
::
index_t
Batch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceBatchedGemmPtr
=
std
::
unique_ptr
<
DeviceBatchedGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_e_permute.hpp
0 → 100644
View file @
78e355fd
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
BatchedGemmEPermuteDesc
{
ck
::
index_t
G0_
,
G1_
,
M_
,
N_
;
ck
::
index_t
stride_G0_
,
stride_G1_
,
stride_M_
,
stride_N_
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceBatchedGemmEPermute
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
index_t
batch_stride_A
,
index_t
batch_stride_B
,
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
,
index_t
BatchCount
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceBatchedGemmGemm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b0
,
const
void
*
p_b1
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB0
,
ck
::
index_t
StrideB1
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB0
,
ck
::
index_t
BatchStrideB1
,
ck
::
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceBatchedGemmMultiD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
DsLayout
::
Size
()
==
DsDataType
::
Size
(),
"wrong! inconsisiten NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
Batch
,
index_t
StrideA
,
index_t
StrideB
,
const
std
::
array
<
ck
::
index_t
,
NumDTensor
>&
StrideDs
,
index_t
StrideE
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
const
std
::
array
<
ck
::
index_t
,
NumDTensor
>&
BatchStrideDs
,
index_t
BatchStrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
A0Layout
,
typename
B0Layout
,
typename
D0sLayout
,
typename
B1Layout
,
typename
D1sLayout
,
typename
E1Layout
,
typename
A0DataType
,
typename
B0DataType
,
typename
D0sDataType
,
typename
B1DataType
,
typename
D1sDataType
,
typename
E1DataType
,
typename
A0ElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
CDE0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CDE1ElementwiseOperation
>
struct
DeviceBatchedGemmMultipleDGemmMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumD0Tensor
=
D0sDataType
::
Size
();
static
constexpr
index_t
NumD1Tensor
=
D1sDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a0
,
const
void
*
p_b0
,
std
::
array
<
const
void
*
,
NumD0Tensor
>
p_d0s
,
const
void
*
p_b1
,
std
::
array
<
const
void
*
,
NumD1Tensor
>
p_d1s
,
void
*
p_e1
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
ck
::
index_t
StrideA0
,
ck
::
index_t
StrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
StrideD0s
,
ck
::
index_t
StrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
StrideD1s
,
ck
::
index_t
StrideE1
,
ck
::
index_t
BatchStrideA0
,
ck
::
index_t
BatchStrideB0
,
std
::
array
<
ck
::
index_t
,
NumD0Tensor
>
BatchStrideD0s
,
ck
::
index_t
BatchStrideB1
,
std
::
array
<
ck
::
index_t
,
NumD1Tensor
>
BatchStrideD1s
,
ck
::
index_t
BatchStrideE1
,
A0ElementwiseOperation
a0_element_op
,
B0ElementwiseOperation
b0_element_op
,
CDE0ElementwiseOperation
cde0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CDE1ElementwiseOperation
cde1_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
MaskOutUpperTriangle
>
// TODO: enum for mask type
struct
DeviceBatchedGemmSoftmaxGemm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b0
,
const
void
*
p_b1
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB0
,
ck
::
index_t
StrideB1
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB0
,
ck
::
index_t
BatchStrideB1
,
ck
::
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
MaskingSpecialization
MaskingSpec
>
struct
DeviceBatchedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
static
constexpr
index_t
NumAcc0Bias
=
Acc0BiasDataType
::
Size
();
static
constexpr
index_t
NumAcc1Bias
=
Acc1BiasDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b0
,
const
void
*
p_b1
,
void
*
p_c
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormBwd
:
public
BaseOperator
{
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumBatchNormReduceDim
;
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
dyStrides
,
const
std
::
array
<
index_t
,
Rank
>
dxStrides
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnDscaleDbiasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_dy
,
const
void
*
p_scale
,
const
void
*
p_savedMean
,
const
void
*
p_savedInvVar
,
double
epsilon
,
const
DyElementwiseOp
dy_elementwise_op
,
void
*
p_dx
,
void
*
p_dscale
,
void
*
p_dbias
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormBwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
XDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
BiasDataType
,
typename
MeanVarDataType
,
typename
YElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormFwd
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
yStrides
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnBiasStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
bnScale
,
const
void
*
bnBias
,
double
epsilon
,
const
YElementwiseOp
y_elementwise_op
,
void
*
p_y
,
void
*
resultSaveMean
,
void
*
resultSaveInvVariance
,
double
exponentialAverageFactor
,
void
*
resultRunningMean
,
void
*
resultRunningVariance
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
XDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
BiasDataType
,
typename
MeanVarDataType
,
typename
YElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormFwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormFwd
<
XDataType
,
YDataType
,
AccDataType
,
ScaleDataType
,
BiasDataType
,
MeanVarDataType
,
YElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
XDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
BiasDataType
,
typename
MeanVarDataType
,
typename
YElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormInfer
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
yStrides
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnBiasStrides
,
const
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
bnScale
,
const
void
*
bnBias
,
double
epsilon
,
const
YElementwiseOp
y_elementwise_op
,
const
void
*
estimatedMean
,
const
void
*
estimatedInvVariance
,
void
*
p_y
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
XDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
BiasDataType
,
typename
MeanVarDataType
,
typename
YElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormInferPtr
=
std
::
unique_ptr
<
DeviceBatchNormInfer
<
XDataType
,
YDataType
,
AccDataType
,
ScaleDataType
,
BiasDataType
,
MeanVarDataType
,
YElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_cgemm.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceCGemm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a_real
,
const
void
*
p_a_imag
,
const
void
*
p_b_real
,
const
void
*
p_b_imag
,
void
*
p_c_real
,
void
*
p_c_imag
,
void
*
p_workspace
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
ck
::
index_t
KBatch
=
1
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
size_t
GetWorkspaceSize
(
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
)
=
0
;
};
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceCGemmPtr
=
std
::
unique_ptr
<
DeviceCGemm
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[M0, M1, M2, ..., K0, K1, K2, ...]
// B[N0, N1, N2, ..., K0, K1, K2, ...]
// D[M0, M1, M2, ..., N0, N1, N2, ...]
// E[M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceContractionMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
13
14
15
16
17
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment