Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_onnxruntime
Commits
78e355fd
Commit
78e355fd
authored
Dec 20, 2022
by
gaoqiong
Browse files
onnxruntime
parent
fae08684
Pipeline
#494
failed with stages
in 0 seconds
Changes
358
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3385 additions
and
0 deletions
+3385
-0
example/24_batched_gemm/run_batched_gemm_example.inc
example/24_batched_gemm/run_batched_gemm_example.inc
+240
-0
example/25_gemm_bias_e_permute/CMakeLists.txt
example/25_gemm_bias_e_permute/CMakeLists.txt
+2
-0
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
+397
-0
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
+398
-0
example/26_contraction/CMakeLists.txt
example/26_contraction/CMakeLists.txt
+2
-0
example/26_contraction/README.md
example/26_contraction/README.md
+20
-0
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
+427
-0
example/26_contraction/contraction_scale_xdl_fp32.cpp
example/26_contraction/contraction_scale_xdl_fp32.cpp
+409
-0
example/27_layernorm/CMakeLists.txt
example/27_layernorm/CMakeLists.txt
+1
-0
example/27_layernorm/layernorm_blockwise.cpp
example/27_layernorm/layernorm_blockwise.cpp
+139
-0
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
+1
-0
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
+466
-0
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
+1
-0
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
+397
-0
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+22
-0
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+30
-0
example/30_grouped_conv_fwd_multiple_d/common.hpp
example/30_grouped_conv_fwd_multiple_d/common.hpp
+355
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
+26
-0
No files found.
Too many changes to show.
To preserve performance only
358 of 358+
files are displayed.
Plain diff
Email patch
example/24_batched_gemm/run_batched_gemm_example.inc
0 → 100644
View file @
78e355fd
#include <random>
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_C
=
N
;
ck
::
index_t
batch_stride_A
=
M
*
K
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
ck
::
index_t
batch_stride_C
=
M
*
N
;
ck
::
index_t
batch_count
=
16
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_batched_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
KernelADataType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
KernelBDataType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
KernelEDataType
));
#endif
auto
&
[
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_count
]
=
problem_size
;
// GEMM shape
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
#ifdef BUILD_INT4_EXAMPLE
Tensor
<
KernelEDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
#else
Tensor
<
EDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
#endif
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
KernelADataType
>
a_g_m_k_converted
(
a_g_m_k
);
const
Tensor
<
KernelBDataType
>
b_g_k_n_converted
(
b_g_k_n
);
a_device_buf
.
ToDevice
(
a_g_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n_converted
.
mData
.
data
());
#else
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
#endif
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
batch_count
,
stride_A
,
stride_B
,
{},
stride_C
,
batch_stride_A
,
batch_stride_B
,
{},
batch_stride_C
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
e_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
e_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
EDataType
>
e_device_result_converted
(
e_g_m_n_device_result
);
pass
&=
ck
::
utils
::
check_err
(
e_device_result_converted
,
e_g_m_n_host_result
);
#else
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_device_result
,
e_g_m_n_host_result
,
"Error: Incorrect results c"
);
#endif
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
?
0
:
1
;
}
bool
run_batched_gemm_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
15
);
problem_size
.
M
=
256
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
64
*
(
dis
(
gen
)
+
2
);
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
problem_size
.
batch_count
=
16
;
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
return
run_batched_gemm
(
problem_size
,
config
);
}
example/25_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
)
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
1
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
3
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
1
&&
NumDimM
==
2
&&
NumDimN
==
3
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G1_M2_N3_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G1_M2_N3_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_gs_ms_ns
=
[
&
](
auto
g0
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
,
auto
n2
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
n0
,
n1
,
n2
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_gs_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M3_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
4
;
ck
::
index_t
N1
=
16
;
ck
::
index_t
N2
=
32
;
ck
::
index_t
K0
=
256
;
// A[M0, M1, M2, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
N0
,
N1
,
N2
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
N0
*
N1
*
N2
*
K0
,
N1
*
N2
*
K0
,
N2
*
K0
,
K0
,
1
};
// D[N0, M0, N1, M1, N2]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
N0
,
N1
,
N2
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
N0
*
N1
*
N2
,
0
,
0
,
N1
*
N2
,
N2
,
1
};
// E[N0, M0, N1, M1, N2]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
N0
,
N1
,
N2
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
M0
*
M1
*
N0
*
N1
*
N2
,
N1
*
M1
*
N2
,
N2
,
M0
*
N1
*
M1
*
N2
,
M1
*
N2
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
NumDimM
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_G1_M2_N3_K1
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_gs_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
g0
=
0
;
g0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
g0
)
{
for
(
size_t
m0
=
0
;
m0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n1
)
{
for
(
size_t
n2
=
0
;
n2
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
5
];
++
n2
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
),
c_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
),
d_gs_ms_ns
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
));
}
}
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
1
;
static
constexpr
ck
::
index_t
NumDimM
=
3
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
1
&&
NumDimM
==
3
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G1_M3_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G1_M3_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_gs_ms_ns
=
[
&
](
auto
g0
,
auto
m0
,
auto
m1
,
auto
m2
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
m0
,
m1
,
m2
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_gs_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G1_M3_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
8
;
ck
::
index_t
M2
=
256
;
ck
::
index_t
N0
=
32
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
1024
;
// A[M0, M1, M2, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
M0
,
M1
,
M2
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M0
*
M1
*
M2
*
K0
,
M1
*
M2
*
K0
,
M2
*
K0
,
K0
,
1
};
// B[N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[M0, N0, M1, N1, M2]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
N0
*
N1
,
0
,
0
,
0
,
N1
,
1
};
// E[M1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
M0
*
M1
*
M2
*
N1
*
N0
,
N0
*
M1
*
N1
,
N1
,
M0
*
N0
*
M1
*
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_G1_M3_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_gs_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
g0
=
0
;
g0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
g0
)
{
for
(
size_t
m0
=
0
;
m0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m1
)
{
for
(
size_t
m2
=
0
;
m2
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
m2
)
{
for
(
size_t
n0
=
0
;
n0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
5
];
++
n1
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
),
c_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
),
d_gs_ms_ns
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
));
}
}
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/26_contraction/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp
)
add_example_executable
(
example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp
)
example/26_contraction/README.md
0 → 100644
View file @
78e355fd
# Instructions for ```example_contraction_bilinear_xdl_fp32```
## Run
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
```
Result (MI100 @ dynammic freq, 46TFlops peak FP32)
```
a_ms_ks: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
b_ks_ns: dim 4, lengths {32, 64, 32, 64}, strides {128, 1, 524288, 4096}
c_ms_ns: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.843286 ms, 38.1985 TFlops, 94.5014 GB/s, DeviceContractionMultipleD_Xdl_CShuffle<256, 256, 128, 16, 4, 4>
```
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceKNNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceMKNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
1
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceMNNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
1
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
alpha
=
1.
f
;
float
beta
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
28
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
6
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
7
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
8
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
9
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
10
]),
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
14
]),
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
])};
d_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
d_ms_ns_strides
=
{
std
::
stoi
(
argv
[
18
]),
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
22
]),
std
::
stoi
(
argv
[
23
]),
std
::
stoi
(
argv
[
24
]),
std
::
stoi
(
argv
[
25
])};
alpha
=
std
::
stof
(
argv
[
26
]);
beta
=
std
::
stof
(
argv
[
27
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 7: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg18 to 21: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1
\n
"
);
printf
(
"arg22 to 25: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg26 to 27: alpha, beta
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
EDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_ms_ns: "
<<
d_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_ms_ns: "
<<
e_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n1
)
{
cde_element_op
(
e_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
c_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
d_ms_ns
(
m0
,
m1
,
n0
,
n1
));
}
}
}
}
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/26_contraction/contraction_scale_xdl_fp32.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceOpInstanceKKN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceKNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceMKN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
1
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
DeviceOpInstanceMNN
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
DsDataType
,
F32
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
1
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
float
scale
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
23
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
6
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
7
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
8
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
9
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
10
]),
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
14
]),
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
18
]),
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
])};
scale
=
std
::
stof
(
argv
[
22
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg22: scale
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_ms_ns: "
<<
e_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_ns_ks
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
scale
};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n1
)
{
cde_element_op
(
e_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
c_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
));
}
}
}
}
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/27_layernorm/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_layernorm_blockwise layernorm_blockwise.cpp
)
example/27_layernorm/layernorm_blockwise.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
>
;
// OutScalarPerVector
int
main
()
{
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
N
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
using
namespace
ck
::
literals
;
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
};
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
GammaDataType
>
gamma
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
YDataType
>
y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
beta
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
0.0
,
1.0
});
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
auto
device_instance
=
DeviceInstance
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
{
M
,
N
},
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()},
{
0
,
1
},
{
0
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
().
begin
(),
y
.
mDesc
.
GetStrides
().
end
()},
{
1
},
1e-4
,
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
PassThrough
{});
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
return
1
;
};
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
{
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
PassThrough
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp
)
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimM
=
3
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedContractionMultipleD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
3
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_M3_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M3_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
m2
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
m2
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
m2
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M3_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
std
::
size_t
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
ContractionDesc
<
1
>>
contraction_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_ds
;
std
::
vector
<
void
*>
p_c
;
contraction_descs
.
reserve
(
group_count
);
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M0
=
4
*
(
rand
()
%
4
+
1
);
int
M1
=
4
*
(
rand
()
%
4
+
1
);
int
M2
=
256
;
int
N0
=
4
*
(
rand
()
%
4
+
1
);
int
N1
=
128
;
int
K0
=
64
*
(
rand
()
%
4
+
1
);
// A[M0, M1, M2, K0]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
M0
,
M1
,
M2
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
M1
*
M2
*
K0
,
M2
*
K0
,
K0
,
1
};
// B[N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
N1
*
K0
,
K0
,
1
};
#if 0
// D[M0, N0, M1, N1, M2]
std::vector<ck::index_t> d_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> d_ms_ns_strides{0, 0, 0, N1, 1};
// E[M0, N0, M1, N1, M2]
std::vector<ck::index_t> e_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> e_ms_ns_strides{N0 * M1 * N1 * M2, N1 * M2, 1, M1 * N1 * M2, M2};
#else
// D[M0, N0, M1, N1, M2]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
0
,
0
,
0
,
N1
,
1
};
// E[M0, N0, M1, N1, M2]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
M1
*
M2
*
N0
*
N1
,
M2
*
N0
*
N1
,
N0
*
N1
,
N1
,
1
};
#endif
contraction_descs
.
push_back
(
ck
::
tensor_operation
::
device
::
ContractionDesc
<
1
>
{
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
{
d_ms_ns_lengths
},
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
});
}
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
DDataType
>>
d_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d_tensors
.
reserve
(
group_count
);
e_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
d_tensors_device
,
e_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d_tensors_device
.
reserve
(
group_count
);
e_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
contraction_descs
.
size
();
i
++
)
{
const
auto
a_ms_ks_lengths
=
contraction_descs
[
i
].
a_ms_ks_lengths
;
const
auto
a_ms_ks_strides
=
contraction_descs
[
i
].
a_ms_ks_strides
;
const
auto
b_ns_ks_lengths
=
contraction_descs
[
i
].
b_ns_ks_lengths
;
const
auto
b_ns_ks_strides
=
contraction_descs
[
i
].
b_ns_ks_strides
;
const
auto
d_ms_ns_lengths
=
contraction_descs
[
i
].
ds_ms_ns_lengths
[
0
];
const
auto
d_ms_ns_strides
=
contraction_descs
[
i
].
ds_ms_ns_strides
[
0
];
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
DDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
ck
::
index_t
M_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
a_tensors
.
push_back
(
a_ms_ks
);
b_tensors
.
push_back
(
b_ns_ks
);
d_tensors
.
push_back
(
d_ms_ns
);
// e_host_tensors.push_back(e_ms_ns_host_result);
e_device_tensors
.
push_back
(
e_ms_ns_device_result
);
flop
+=
std
::
size_t
(
2
)
*
M_
*
K_
*
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSize
();
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_n_k: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
e_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_1
<
DDataType
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
contraction_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
d_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
DDataType
)
*
d_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
e_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
d_tensors_device
[
i
]
->
ToDevice
(
d_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_ds
.
push_back
({
d_tensors_device
[
i
]
->
GetDeviceBuffer
()});
p_c
.
push_back
(
e_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceOpInstanceKKNN
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_ds
,
p_c
,
contraction_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
DeviceMem
contraction_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
contraction_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
EDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
using
ReferenceOpInstance
=
ReferenceContraction_M3_N2_K1
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
m2
=
0
;
m2
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m2
)
{
for
(
size_t
n0
=
0
;
n0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n1
)
{
cde_element_op
(
e_ms_ns_host_result
(
m0
,
m1
,
m2
,
n0
,
n1
),
c_ms_ns_host_result
(
m0
,
m1
,
m2
,
n0
,
n1
),
d_tensors
[
i
](
m0
,
m1
,
m2
,
n0
,
n1
));
}
}
}
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
],
e_ms_ns_host_result
);
}
}
return
pass
?
0
:
1
;
}
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_example_executable
(
example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp
)
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
2
&&
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G2_M2_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G2_M2_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
g0
,
auto
g1
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
g1
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
g1
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G2_M2_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
2
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
64
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
NumDimG
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
sizeof
(
DDataType
)
*
G
*
M
*
N
+
sizeof
(
EDataType
)
*
G
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
g0
=
0
;
g0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
g0
)
{
for
(
size_t
g1
=
0
;
g1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
g1
)
{
for
(
size_t
m0
=
0
;
m0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
5
];
++
n1
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
),
c_ms_ns_host_result
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
),
d_gs_ms_ns
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
));
}
}
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
0 → 100644
View file @
78e355fd
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
example/30_grouped_conv_fwd_multiple_d/README.md
0 → 100644
View file @
78e355fd
Command
```
bash
arg1: verification
(
0
=
no,
1
=
yes
)
arg2: initialization
(
0
=
no init,
1
=
integer value,
2
=
decimal value
)
arg3:
time
kernel
(
0
=
no,
1
=
yes
)
Following arguments
(
depending on number of spatial dims
)
:
Number of spatial dimensions
(
1
=
Conv1d,
2
=
Conv2d,
3
=
Conv3d
)
G, N, K, C,
<filter spatial dimensions>,
(
ie Y, X
for
2D
)
<input image spatial dimensions>,
(
ie Hi, Wi
for
2D
)
<strides>,
(
ie Sy, Sx
for
2D
)
<dilations>,
(
ie Dy, Dx
for
2D
)
<left padding>,
(
ie LeftPy, LeftPx
for
2D
)
<right padding>,
(
ie RightPy, RightPx
for
2D
)
./bin/example_grouped_conv_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {192, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default>
```
example/30_grouped_conv_fwd_multiple_d/common.hpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <array>
#include <iostream>
#include <string>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
BF16
=
ck
::
bhalf_t
;
using
FP16
=
ck
::
half_t
;
using
FP32
=
float
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
I4
=
ck
::
int4_t
;
#endif
using
I8
=
std
::
int8_t
;
using
I32
=
std
::
int32_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
InputLay
,
typename
WeightLay
,
typename
OutputLay
>
struct
CommonLayoutSetting
{
using
InputLayout
=
InputLay
;
using
WeightLayout
=
WeightLay
;
using
OutputLayout
=
OutputLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
CommonLayoutSettingSelector
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
template
<
>
struct
CommonLayoutSettingSelector
<
1
>
final
:
CommonLayoutSetting
<
ctl
::
G_NW_C
,
ctl
::
G_K_X_C
,
ctl
::
G_NW_K
>
{
};
template
<
>
struct
CommonLayoutSettingSelector
<
2
>
final
:
CommonLayoutSetting
<
ctl
::
G_NHW_C
,
ctl
::
G_K_YX_C
,
ctl
::
G_NHW_K
>
{
};
template
<
>
struct
CommonLayoutSettingSelector
<
3
>
final
:
CommonLayoutSetting
<
ctl
::
G_NDHW_C
,
ctl
::
G_K_ZYX_C
,
ctl
::
G_NDHW_K
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
InputLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
InputLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
WeightLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
WeightLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
OutputLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
OutputLayout
;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
};
#define DefaultConvParam \
ck::utils::conv::ConvParam \
{ \
2, 32, 2, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, { 1, 1 } \
}
inline
void
print_help_msg
()
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ExecutionConfig
&
config
,
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
constexpr
int
num_execution_config_args
=
3
;
// arguments for do_verification, init_method, time_kernel
constexpr
int
num_conv_param_leading_args
=
5
;
// arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr
int
threshold_to_catch_partial_args
=
1
+
num_execution_config_args
;
constexpr
int
threshold_to_catch_all_args
=
threshold_to_catch_partial_args
+
num_conv_param_leading_args
;
if
(
argc
==
1
)
{
// use default
}
// catch only ExecutionConfig arguments
else
if
(
argc
==
threshold_to_catch_partial_args
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
// catch both ExecutionConfig & ConvParam arguments
else
if
(
threshold_to_catch_all_args
<
argc
&&
((
argc
-
threshold_to_catch_all_args
)
%
3
==
0
))
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
threshold_to_catch_partial_args
,
argv
);
}
else
{
print_help_msg
();
return
false
;
}
return
true
;
}
inline
HostTensorDescriptor
make_input_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
case
2
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
case
3
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
}
throw
std
::
runtime_error
(
"unsuppored # dim spatial"
);
}
inline
HostTensorDescriptor
make_weight_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
case
2
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
case
3
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
}
throw
std
::
runtime_error
(
"unsuppored # dim spatial"
);
}
inline
HostTensorDescriptor
make_bias_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
case
2
:
return
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
case
3
:
return
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
}
throw
std
::
runtime_error
(
"unsuppored # dim spatial"
);
}
inline
HostTensorDescriptor
make_output_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
case
2
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
case
3
:
return
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
}
throw
std
::
runtime_error
(
"unsuppored # dim spatial"
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
BF16
;
using
WeiKernelDataType
=
BF16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
BF16
;
using
ResidualKernelDataType
=
BF16
;
using
OutKernelDataType
=
BF16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
BiasKernelDataType
=
FP16
;
using
ResidualKernelDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
0 → 100644
View file @
78e355fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP32
;
using
WeiKernelDataType
=
FP32
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
FP32
;
using
ResidualKernelDataType
=
FP32
;
using
OutKernelDataType
=
FP32
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
Prev
1
…
6
7
8
9
10
11
12
13
14
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment