#include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/device_elementwise.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" using F16 = ck::half_t; using F32 = float; using ADataType = F16; using BDataType = F16; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwise, ck::Tuple, PassThrough, 4, 8, ck::Sequence<8>, ck::Sequence<1>>; template void host_elementwise4D(HostTensorB& B, const HostTensorA& A, const std::vector& shape, Functor functor) { using btype = ck::remove_reference_t; for(std::size_t n = 0; n < shape[0]; ++n) for(std::size_t c = 0; c < shape[1]; ++c) for(std::size_t h = 0; h < shape[2]; ++h) for(std::size_t w = 0; w < shape[3]; ++w) { auto a_val = A(n, c, h, w); btype b_val = 0; functor(b_val, a_val); B(n, h, w, c) = b_val; } } int main() { bool do_verification = true; bool time_kernel = false; std::size_t N = 4, C = 16, H = 32, W = 32; std::vector nchw = {N, C, H, W}; std::vector nhwc = {N, H, W, C}; Tensor a(nchw); Tensor b(nhwc); a.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize()); DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize()); a_device_buf.ToDevice(a.mData.data()); std::array input = {a_device_buf.GetDeviceBuffer()}; std::array output = {b_device_buf.GetDeviceBuffer()}; std::array ab_lengths; std::array a_strides; std::array b_strides; std::copy(nchw.begin(), nchw.end(), ab_lengths.begin()); std::copy(a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end(), a_strides.begin()); std::copy(b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end(), b_strides.begin()); auto broadcastPermute = DeviceElementwisePermuteInstance{}; auto argument = broadcastPermute.MakeArgumentPointer( ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{}); if(!broadcastPermute.IsSupportedArgument(argument.get())) { throw std::runtime_error( "The runtime parameters seems not supported by the device instance, exiting!"); }; auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer(); float ave_time = broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel}); std::cout << "Perf: " << ave_time << " ms" << std::endl; bool pass = true; if(do_verification) { b_device_buf.FromDevice(b.mData.data()); Tensor host_b(nhwc); host_elementwise4D, Tensor, PassThrough>( host_b, a, nhwc, PassThrough{}); pass &= ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3); } return pass ? 0 : 1; }