#include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp" #include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" using F16 = ck::half_t; using F32 = float; using ADataType = F16; using BDataType = F16; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwise3dImpl, // InDataTypeTuple ck::Tuple, // OutDataTypeTuple PassThrough, // ElementwiseOp 2, // NumDim_m, {N, C} 2, // NumDim_n, {H, W} 1, // NumDim_k, {D} 8, // MPerThread 8, // NPerThread 8, // KPerThread ck::Sequence<8>, // InScalarPerVectorSeq ck::Sequence<4>>; // OutScalarPerVectorSeq template void host_elementwise4D(HostTensorB& B_ndhwc, const HostTensorA& A_ncdhw, Functor functor) { for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n) for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c) for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d) for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h) for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w) { auto a_val = A_ncdhw(n, c, d, h, w); functor(B_ndhwc(n, d, h, w, c), a_val); } } int main() { bool do_verification = true; bool time_kernel = true; const int N = 4; const int C = 16; const int H = 32; const int W = 5; const int D = 16; std::vector ncdhw = {N, C, D, H, W}; std::vector ndhwc = {N, D, H, W, C}; Tensor a(ncdhw); Tensor b(ndhwc); a.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize()); DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize()); a_device_buf.ToDevice(a.mData.data()); std::array input = {a_device_buf.GetDeviceBuffer()}; std::array output = {b_device_buf.GetDeviceBuffer()}; std::array ab_lengths{N, C, H, W, D}; std::array a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W std::array b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, D, H, W, C auto broadcastPermute = DeviceElementwisePermuteInstance{}; auto argument = broadcastPermute.MakeArgumentPointer( ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{}); if(!broadcastPermute.IsSupportedArgument(argument.get())) { throw std::runtime_error( "The runtime parameters seems not supported by the device instance, exiting!"); }; std::cout << "A (ncdhw): " << a.mDesc << std::endl; std::cout << "B (ndhwc): " << b.mDesc << std::endl; auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer(); float ave_time = broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel}); std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]; std::size_t num_btype = sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) + sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]); float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" << std::endl; bool pass = true; if(do_verification) { b_device_buf.FromDevice(b.mData.data()); Tensor host_b(ndhwc); host_elementwise4D(host_b, a, PassThrough{}); pass &= ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3); } return pass ? 0 : 1; }