// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp" #include "ck/library/utility/array.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_parameter.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" void print_helper_msg() { std::cout << "arg1: verification (0=no, 1=yes)\n" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n" << "arg3: time kernel (0=no, 1=yes)\n" << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl; } template bool run_grouped_conv_fwd(bool do_verification, int init_method, bool time_kernel, const ck::utils::conv::ConvParam& conv_param, const HostTensorDescriptor& in_g_n_c_wis_desc, const HostTensorDescriptor& wei_g_k_c_xs_desc, const HostTensorDescriptor& out_g_n_k_wos_desc, const InElementOp& in_element_op, const WeiElementOp& wei_element_op, const OutElementOp& out_element_op) { Tensor in(in_g_n_c_wis_desc); Tensor wei(wei_g_k_c_xs_desc); Tensor out_host(out_g_n_k_wos_desc); Tensor out_device(out_g_n_k_wos_desc); std::cout << "in: " << in.GetDesc() << std::endl; std::cout << "wei: " << wei.GetDesc() << std::endl; std::cout << "out: " << out_host.GetDesc() << std::endl; switch(init_method) { case 0: break; case 1: in.GenerateTensorValue(GeneratorTensor_2{-5, 5}); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); wei.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); } DeviceMem in_device_buf(in.GetMemorySize()); DeviceMem wei_device_buf(wei.GetMemorySize()); DeviceMem out_device_buf(out_device.GetMemorySize()); in_device_buf.ToDevice(in.data()); wei_device_buf.ToDevice(wei.data()); using ck::utils::empty_array, ck::utils::to_array; // do Conv auto conv = DeviceConvNDFwdInstance{}; auto invoker = conv.MakeInvoker(); auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(), wei_device_buf.GetDeviceBuffer(), empty_array(), out_device_buf.GetDeviceBuffer(), to_array(in_g_n_c_wis_desc.GetLengths()), to_array(in_g_n_c_wis_desc.GetStrides()), to_array(wei_g_k_c_xs_desc.GetLengths()), to_array(wei_g_k_c_xs_desc.GetStrides()), empty_array(), empty_array(), to_array(out_g_n_k_wos_desc.GetLengths()), to_array(out_g_n_k_wos_desc.GetStrides()), to_array(conv_param.conv_filter_strides_), to_array(conv_param.conv_filter_dilations_), to_array(conv_param.input_left_pads_), to_array(conv_param.input_right_pads_), in_element_op, wei_element_op, out_element_op); if(!conv.IsSupportedArgument(argument)) { throw std::runtime_error( "wrong! device_conv with the specified compilation parameters does " "not support this Conv problem"); } float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); std::size_t flop = conv_param.GetFlops(); std::size_t num_btype = conv_param.GetByte(); float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_btype / 1.E6 / avg_time; std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << conv.GetTypeString() << std::endl; if(do_verification) { auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd(); auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(in, wei, out_host, conv_param.conv_filter_strides_, conv_param.conv_filter_dilations_, conv_param.input_left_pads_, conv_param.input_right_pads_, in_element_op, wei_element_op, out_element_op); ref_invoker.Run(ref_argument); out_device_buf.FromDevice(out_device.data()); return ck::utils::check_err( out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f); } return true; }