// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/host_tensor/host_tensor.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/utility/check_err.hpp" template using S = ck::Sequence; using BF16 = ck::bhalf_t; using F32 = float; using Row = ck::tensor_layout::gemm::RowMajor; using Col = ck::tensor_layout::gemm::ColumnMajor; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using ADataType = BF16; using BDataType = BF16; using CDataType = BF16; using AccDataType = F32; using ALayout = ck::tensor_layout::gemm::RowMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor; using CLayout = ck::tensor_layout::gemm::RowMajor; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; // clang-format off using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle , // typename ABlockTransferThreadClusterLengths_AK0_M_AK1 S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder 2, // index_t ABlockTransferSrcVectorDim 8, // index_t ABlockTransferSrcScalarPerVector 8, // index_t ABlockTransferDstScalarPerVector_AK1 1, // index_t ABlockLdsExtraM S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1 S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder 2, // index_t BBlockTransferSrcVectorDim 8, // index_t BBlockTransferSrcScalarPerVector 8, // index_t BBlockTransferDstScalarPerVector_BK1 1, // index_t BBlockLdsExtraN 1, // index_t CShuffleMXdlPerWavePerShuffle 1, // index_t CShuffleNXdlPerWavePerShuffle S<1, 32, 1, 8>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock 8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock // clang-format on using ReferenceGemmInstance = ck::tensor_operation::host:: ReferenceGemm; int main(int argc, char* argv[]) { bool do_verification = true; int init_method = 1; bool time_kernel = false; // GEMM shape ck::index_t M = 3840; ck::index_t N = 4096; ck::index_t K = 4096; ck::index_t StrideA = 4096; ck::index_t StrideB = 4096; ck::index_t StrideC = 4096; if(argc == 4) { do_verification = std::stoi(argv[1]); init_method = std::stoi(argv[2]); time_kernel = std::stoi(argv[3]); } else if(argc == 10) { do_verification = std::stoi(argv[1]); init_method = std::stoi(argv[2]); time_kernel = std::stoi(argv[3]); M = std::stoi(argv[4]); N = std::stoi(argv[5]); K = std::stoi(argv[6]); StrideA = std::stoi(argv[7]); StrideB = std::stoi(argv[8]); StrideC = std::stoi(argv[9]); } else { printf("arg1: verification (0=no, 1=yes)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg3: time kernel (0=n0, 1=yes)\n"); printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"); exit(0); } auto f_host_tensor_descriptor = [](std::size_t row, std::size_t col, std::size_t stride, auto layout) { if(std::is_same::value) { return HostTensorDescriptor(std::vector({row, col}), std::vector({stride, 1})); } else { return HostTensorDescriptor(std::vector({row, col}), std::vector({1, stride})); } }; Tensor a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl; switch(init_method) { case 0: break; case 1: a_m_k.GenerateTensorValue(GeneratorTensor_2{-5, 5}); b_k_n.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: a_m_k.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); b_k_n.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); } DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace()); a_m_k_device_buf.ToDevice(a_m_k.mData.data()); b_k_n_device_buf.ToDevice(b_k_n.mData.data()); auto a_element_op = PassThrough{}; auto b_element_op = PassThrough{}; auto c_element_op = PassThrough{}; // do GEMM auto gemm = DeviceGemmInstance{}; auto invoker = gemm.MakeInvoker(); auto argument = gemm.MakeArgument(static_cast(a_m_k_device_buf.GetDeviceBuffer()), static_cast(b_k_n_device_buf.GetDeviceBuffer()), static_cast(c_m_n_device_buf.GetDeviceBuffer()), M, N, K, StrideA, StrideB, StrideC, a_element_op, b_element_op, c_element_op); if(!gemm.IsSupportedArgument(argument)) { std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl; return 0; } float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); std::size_t flop = std::size_t(2) * M * N * K; std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N; float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << gemm.GetTypeString() << std::endl; c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); if(do_verification) { Tensor a_f32_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor b_f32_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor c_m_n_device_f32_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); bf16_to_f32_(a_m_k, a_f32_m_k); bf16_to_f32_(b_k_n, b_f32_k_n); bf16_to_f32_(c_m_n_device_result, c_m_n_device_f32_result); auto ref_gemm = ReferenceGemmInstance{}; auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_argument = ref_gemm.MakeArgument( a_f32_m_k, b_f32_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op); ref_invoker.Run(ref_argument); return ck::utils::check_err(c_m_n_device_f32_result.mData, c_m_n_host_result.mData) ? 0 : 1; } return 0; }