// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include #include "ck/ck.hpp" #include "ck/utility/reduction_enums.hpp" #include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp" #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp" using XDataType = ck::half_t; using GammaDataType = ck::half_t; using BetaDataType = ck::half_t; using YDataType = ck::half_t; using AccDataType = float; using Sigmoid = ck::tensor_operation::element_wise::Sigmoid; constexpr int Rank = 5; constexpr int NumReduceDim = 3; using DeviceInstance = ck::tensor_operation::device::DeviceLayernormImpl; // OutScalarPerVector int main() { ck::index_t N = 1; ck::index_t H = 16; ck::index_t W = 16; ck::index_t G = 32; ck::index_t C = 40; Tensor x({N, H, W, G, C}); Tensor y({N, H, W, G, C}); Tensor gamma({G, C}); Tensor beta({G, C}); x.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); gamma.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); beta.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize()); DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize()); DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize()); DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize()); x_dev.ToDevice(x.mData.data()); gamma_dev.ToDevice(gamma.mData.data()); beta_dev.ToDevice(beta.mData.data()); auto device_instance = DeviceInstance{}; auto argument_ptr = device_instance.MakeArgumentPointer( {N, H, W, G, C}, std::vector{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()}, {0, 0, 0, C, 1}, {0, 0, 0, C, 1}, std::vector{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()}, {1, 2, 4}, // [H, W, C] 1e-6, x_dev.GetDeviceBuffer(), gamma_dev.GetDeviceBuffer(), beta_dev.GetDeviceBuffer(), y_dev.GetDeviceBuffer(), Sigmoid{}); if(!device_instance.IsSupportedArgument(argument_ptr.get())) { std::cout << "The runtime parameters are not supported" << std::endl; return 1; }; bool time_kernel = false; auto invoker_ptr = device_instance.MakeInvokerPointer(); invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); bool pass = true; { Tensor host_y({N, H, W, G, C}); using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm; ReferenceInstance ref; auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, Sigmoid{}, {N, H, W, G, C}, 1e-6); auto ref_invoker = ref.MakeInvoker(); ref_invoker.Run(ref_argument); y_dev.FromDevice(y.mData.data()); pass &= ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3); } return (pass ? 0 : 1); }