#pragma once #include #include "config.hpp" #include "device.hpp" #include "host_tensor.hpp" #include "host_tensor_generator.hpp" #include "host_conv.hpp" #include "tensor_layout.hpp" #include "device_tensor.hpp" #include "element_wise_operation.hpp" #include "device_gemm.hpp" #include "reference_gemm.hpp" namespace ck { namespace tensor_operation { namespace device { namespace device_grouped_gemm_instance { using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr; void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector&); //void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector&); //void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector&); //void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector&); } // namespace device_grouped_gemm_instance } // namespace device } // namespace tensor_operation } // namespace ck namespace ck { namespace profiler { template void profile_grouped_gemm_impl(int do_verification, int init_method, bool do_log, int nrepeat, std::vector Ms, std::vector Ns, std::vector Ks, std::vector StrideAs, std::vector StrideBs, std::vector StrideCs) { auto f_host_tensor_descriptor = [](std::size_t row, std::size_t col, std::size_t stride, auto layout) { if(is_same::value) { return HostTensorDescriptor(std::vector({row, col}), std::vector({stride, 1})); } else { return HostTensorDescriptor(std::vector({row, col}), std::vector({1, stride})); } }; std::vector> a_m_k; std::vector> b_k_n; std::vector> c_m_n; for(int i = 0; i < Ms.size(); i++) { a_m_k.push_back(Tensor(f_host_tensor_descriptor( Ms[i], Ks[i], StrideAs[i], ALayout{}))); b_k_n.push_back(Tensor(f_host_tensor_descriptor( Ks[i], Ns[i], StrideBs[i], BLayout{}))); c_m_n.push_back(Tensor(f_host_tensor_descriptor( Ms[i], Ns[i], StrideCs[i], CLayout{}))); std::cout << "a_m_k[" << i << "]:" << a_m_k[i].mDesc << std::endl; std::cout << "b_k_n[" << i << "]:" << b_k_n[i].mDesc << std::endl; std::cout << "c_m_n[" << i << "]:" << c_m_n[i].mDesc << std::endl; std::size_t num_thread = std::thread::hardware_concurrency(); switch(init_method) { case 0: break; case 1: a_m_k[i].GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); b_k_n[i].GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); break; default: a_m_k[i].GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}, num_thread); b_k_n[i].GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}, num_thread); } // set zero to c_device_buf c_m_n[i].GenerateTensorValue(GeneratorTensor_0{}, num_thread); } using AElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough; const auto a_element_op = AElementOp{}; const auto b_element_op = BElementOp{}; const auto c_element_op = CElementOp{}; // if(do_verification) // { // } std::vector a_device_buf, b_device_buf, c_device_buf; //DeviceMem a_device_buf(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()); //DeviceMem b_device_buf(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()); //DeviceMem c_device_buf(sizeof(CDataType) * c_m_n[i].mDesc.GetElementSpace()); for(int i = 0; i < Ms.size(); i++) { a_device_buf.push_back(DeviceMem(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace())); b_device_buf.push_back(DeviceMem(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace())); c_device_buf.push_back(DeviceMem(sizeof(CDataType) * c_m_n[i].mDesc.GetElementSpace())); a_device_buf[i].ToDevice(a_m_k[i].mData.data()); b_device_buf[i].ToDevice(b_k_n[i].mData.data()); c_device_buf[i].ToDevice(c_m_n[i].mData.data()); } // add device GEMM instances std::vector gemm_ptrs; if constexpr(is_same::value && is_same::value && is_same::value) { if constexpr(is_same::value && is_same::value && is_same::value) { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs); } #if 0 else if constexpr(is_same::value && is_same::value && is_same::value) { if(KBatch > 1) { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs); } else { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs); ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs); ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs); } } else if constexpr(is_same::value && is_same::value && is_same::value) { if(KBatch > 1) { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(gemm_ptrs); } else { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs); ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemm_ptrs); } } else if constexpr(is_same::value && is_same::value && is_same::value) { if(KBatch > 1) { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(gemm_ptrs); } else { ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs); ck::tensor_operation::device::device_grouped_gemm_instance:: add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemm_ptrs); } } #endif } if(gemm_ptrs.size() <= 0) { throw std::runtime_error("wrong! no device GEMM instance found"); } std::string best_gemm_name; float best_ave_time = 0; float best_tflops = 0; float best_gb_per_sec = 0; #if 0 // profile device GEMM instances for(auto& gemm_ptr : gemm_ptrs) { auto argument_ptr = gemm_ptr->MakeArgumentPointer(static_cast(a_device_buf.GetDeviceBuffer()), static_cast(b_device_buf.GetDeviceBuffer()), static_cast(c_device_buf.GetDeviceBuffer()), M, N, K, StrideA, StrideB, StrideC, ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{}, KBatch); auto invoker_ptr = gemm_ptr->MakeInvokerPointer(); if(gemm_ptr->IsSupportedArgument(argument_ptr.get())) { std::string gemm_name = gemm_ptr->GetTypeString(); float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); std::size_t flop = std::size_t(2) * M * N * K; std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N; float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << std::endl; if(tflops > best_tflops) { best_gemm_name = gemm_name; best_tflops = tflops; best_ave_time = ave_time; best_gb_per_sec = gb_per_sec; } if(do_verification) { c_device_buf.FromDevice(c_m_n_device_result.mData.data()); if constexpr(is_same::value && is_same::value && is_same::value) { Tensor a_f32_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor b_f32_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor c_m_n_host_result( f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor c_m_n_device_f32_result( f_host_tensor_descriptor(M, N, StrideC, CLayout{})); bf16_to_f32_(a_m_k, a_f32_m_k); bf16_to_f32_(b_k_n, b_f32_k_n); bf16_to_f32_(c_m_n_device_result, c_m_n_device_f32_result); using ReferenceGemmInstance = ck::tensor_operation::host:: ReferenceGemm; auto ref_gemm = ReferenceGemmInstance{}; auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_argument = ref_gemm.MakeArgument(a_f32_m_k, b_f32_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op); ref_invoker.Run(ref_argument); check_error(c_m_n_host_result, c_m_n_device_f32_result); if(do_log) { LogRangeAsType( std::cout << "c_host : ", c_m_n_host_result.mData, ",") << std::endl; } } else { Tensor c_m_n_host_result( f_host_tensor_descriptor(M, N, StrideC, CLayout{})); using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm; auto ref_gemm = ReferenceGemmInstance{}; auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_argument = ref_gemm.MakeArgument( a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op); ref_invoker.Run(ref_argument); check_error(c_m_n_host_result, c_m_n_device_result); if(do_log) { LogRangeAsType( std::cout << "c_host : ", c_m_n_host_result.mData, ",") << std::endl; } } if(do_log) { LogRangeAsType(std::cout << "a : ", a_m_k.mData, ",") << std::endl; LogRangeAsType(std::cout << "b: ", b_k_n.mData, ",") << std::endl; LogRangeAsType(std::cout << "c_device: ", c_m_n_device_result.mData, ",") << std::endl; } } } else { std::cout << "does not support this GEMM problem" << std::endl; } } #endif std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl; } } // namespace profiler } // namespace ck