#include "config.hpp" #include "device.hpp" #include "host_tensor.hpp" #include "host_tensor_generator.hpp" #include "host_conv.hpp" #include "tensor_layout.hpp" #include "device_tensor.hpp" #include "device_conv_fwd.hpp" #include "element_wise_operation.hpp" #include "reference_conv_fwd.hpp" namespace ck { namespace tensor_operation { namespace device { namespace device_conv2d_fwd_instance { using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr; void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector&); void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector&); void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances( std::vector&); void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector&); void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector&); } // namespace device_conv2d_fwd_instance } // namespace device } // namespace tensor_operation } // namespace ck using InElementOp = ck::tensor_operation::element_wise::PassThrough; using WeiElementOp = ck::tensor_operation::element_wise::PassThrough; using OutElementOp = ck::tensor_operation::element_wise::PassThrough; template static bool check_out(const Tensor& ref, const Tensor& result) { float max_diff = 1e-6; for(int i = 0; i < ref.mData.size(); ++i) { float diff = std::abs(double(ref.mData[i]) - double(result.mData[i])); if(max_diff < diff) { return false; } } return true; } int main(int argc, char* argv[]) { int data_type = 0; int init_method = 0; // Conv shape ck::index_t N = 128; ck::index_t K = 256; ck::index_t C = 192; ck::index_t Y = 3; ck::index_t X = 3; ck::index_t Hi = 71; ck::index_t Wi = 71; ck::index_t conv_stride_h = 2; ck::index_t conv_stride_w = 2; ck::index_t conv_dilation_h = 1; ck::index_t conv_dilation_w = 1; ck::index_t in_left_pad_h = 1; ck::index_t in_left_pad_w = 1; ck::index_t in_right_pad_h = 1; ck::index_t in_right_pad_w = 1; if(argc == 1) { init_method = 1; data_type = 0; } else if(argc == 3) { data_type = std::stoi(argv[1]); init_method = std::stoi(argv[2]); } else if(argc == 18) { data_type = std::stoi(argv[1]); init_method = std::stoi(argv[2]); N = std::stoi(argv[3]); K = std::stoi(argv[4]); C = std::stoi(argv[5]); Y = std::stoi(argv[6]); X = std::stoi(argv[7]); Hi = std::stoi(argv[8]); Wi = std::stoi(argv[9]); conv_stride_h = std::stoi(argv[10]); conv_stride_w = std::stoi(argv[11]); conv_dilation_h = std::stoi(argv[12]); conv_dilation_w = std::stoi(argv[13]); in_left_pad_h = std::stoi(argv[14]); in_left_pad_w = std::stoi(argv[15]); in_right_pad_h = std::stoi(argv[16]); in_right_pad_w = std::stoi(argv[17]); } else { printf("arg1: verification (0=no, 1=yes)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg3: run kernel # of times (>1)\n"); printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, " "RightPx\n"); exit(1); } auto Run = [&](auto input_type, auto wei_type, auto out_type) { using InDataType = decltype(input_type); using WeiDataType = decltype(wei_type); using OutDataType = decltype(out_type); using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd; const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1; const ck::index_t XEff = (X - 1) * conv_dilation_w + 1; const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1; const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1; const std::vector input_spatial_lengths{Hi, Wi}; const std::vector filter_spatial_lengths{Y, X}; const std::vector output_spatial_lengths{Ho, Wo}; const std::vector conv_filter_strides{conv_stride_h, conv_stride_w}; const std::vector conv_filter_dilations{conv_dilation_h, conv_dilation_w}; const std::vector input_left_pads{in_left_pad_h, in_left_pad_w}; const std::vector input_right_pads{in_right_pad_h, in_right_pad_w}; auto f_host_tensor_descriptor = [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) { return HostTensorDescriptor(std::vector({N_, C_, H, W}), std::vector({C_ * H * W, 1, W * C_, C_})); }; Tensor in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi)); Tensor wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X)); Tensor out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo)); Tensor out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo)); std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl; std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl; switch(init_method) { case 0: break; case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5}); wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3{0, 1}); wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3{-1, 1}); } DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace()); DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo_device_result.mDesc.GetElementSpace()); in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); wei_device_buf.ToDevice(wei_k_c_y_x.mData.data()); using PassThrough = ck::tensor_operation::element_wise::PassThrough; using DeviceConvFwdNoOpPtr = ck::tensor_operation::device::DeviceConvFwdPtr; // add device Conv instances std::vector conv_ptrs; if constexpr(ck::is_same_v, float> && ck::is_same_v, float> && ck::is_same_v, float>) { ck::tensor_operation::device::device_conv2d_fwd_instance:: add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs); } else if constexpr(ck::is_same_v, ck::half_t> && ck::is_same_v, ck::half_t> && ck::is_same_v, ck::half_t>) { ck::tensor_operation::device::device_conv2d_fwd_instance:: add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs); ck::tensor_operation::device::device_conv2d_fwd_instance:: add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs); } else if constexpr(ck::is_same_v, ck::bhalf_t> && ck::is_same_v, ck::bhalf_t> && ck::is_same_v, ck::bhalf_t>) { ck::tensor_operation::device::device_conv2d_fwd_instance:: add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs); } else if constexpr(ck::is_same_v, int8_t> && ck::is_same_v, int8_t> && ck::is_same_v, int8_t>) { ck::tensor_operation::device::device_conv2d_fwd_instance:: add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs); } if(conv_ptrs.size() <= 0) { throw std::runtime_error("wrong! no device Conv instance found"); } auto ref_conv = ReferenceConvFwdInstance{}; auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi, wei_k_c_y_x, out_n_k_ho_wo_host_result, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}); ref_invoker.Run(ref_argument); // profile device Conv instances bool success = false; for(auto& conv_ptr : conv_ptrs) { auto argument_ptr = conv_ptr->MakeArgumentPointer( static_cast(in_device_buf.GetDeviceBuffer()), static_cast(wei_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), N, K, C, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, PassThrough{}, PassThrough{}, PassThrough{}); auto invoker_ptr = conv_ptr->MakeInvokerPointer(); if(conv_ptr->IsSupportedArgument(argument_ptr.get())) { invoker_ptr->Run(argument_ptr.get(), 0); out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data()); if(!check_out(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result)) { success = false; break; } success = true; } } if(success) { std::cout << "test conv2d fwd : Pass" << std::endl; return 0; } else { std::cout << "test conv2d fwd: Fail " << std::endl; return -1; } }; int res = -1; if(data_type == 0) { res = Run(float(), float(), float()); } else if(data_type == 1) { res = Run(ck::half_t(), ck::half_t(), ck::half_t()); } else if(data_type == 2) { Run(ck::bhalf_t(), ck::bhalf_t(), ck::bhalf_t()); } else if(data_type == 3) { res = Run(int8_t(), int8_t(), int8_t()); } return res; }