// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #pragma once #ifndef NUM_ELEMS_IN_BUNDLE #define NUM_ELEMS_IN_BUNDLE 1 #endif bool run_permute(const Problem& problem) { #if 1 < NUM_ELEMS_IN_BUNDLE static_assert(std::is_same_v && (sizeof(ADataType) % NUM_ELEMS_IN_BUNDLE == 0)); #endif using std::begin, std::end; const auto& shape = problem.shape; ck::remove_cvref_t transposed_shape; transpose_shape(problem.shape, problem.axes, begin(transposed_shape)); Tensor a(shape); Tensor b(transposed_shape); using std::data, std::size; { auto* const elems = reinterpret_cast*>(data(a.mData)); ck::utils::FillUniformDistribution{-1.f, 1.f}( elems, elems + (size(a.mData) * NUM_ELEMS_IN_BUNDLE)); } DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize()); DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize()); a_device_buf.ToDevice(data(a.mData)); std::array a_lengths, b_lengths; std::array a_strides, b_strides; const void* input = a_device_buf.GetDeviceBuffer(); void* output = b_device_buf.GetDeviceBuffer(); std::copy(begin(shape), end(shape), begin(a_lengths)); std::copy(begin(a.mDesc.GetStrides()), end(a.mDesc.GetStrides()), begin(a_strides)); std::copy(begin(transposed_shape), end(transposed_shape), begin(b_lengths)); std::copy(begin(b.mDesc.GetStrides()), end(b.mDesc.GetStrides()), begin(b_strides)); static_assert(std::is_default_constructible_v); auto permute = DevicePermuteInstance{}; auto argument = permute.MakeArgument( a_lengths, a_strides, b_lengths, b_strides, input, output, PassThrough{}); if(!permute.IsSupportedArgument(argument)) { std::cerr << "The runtime parameters seems not supported by the device instance, exiting!" << std::endl; return false; }; auto invoker = permute.MakeInvoker(); float ave_time = invoker.Run(argument, StreamConfig{nullptr, true}); std::cout << "Perf: " << ave_time << " ms" << std::endl; b_device_buf.FromDevice(data(b.mData)); #if NUM_ELEMS_IN_BUNDLE == 1 Tensor host_b(transposed_shape); if(!host_permute(a, problem.axes, PassThrough{}, host_b)) { return false; } return ck::utils::check_err( b.mData, host_b.mData, "Error: incorrect results in output tensor", 1e-6, 1e-6); #else // extend tensor shape from [N, H, W] to [N, H, W, NUM_ELEMS_IN_BUNDLE] using DataType = detail::get_bundled_t; const auto extended_shape = extend_shape(shape, NUM_ELEMS_IN_BUNDLE); const auto extended_axes = extend_axes(problem.axes); ck::remove_cvref_t transposed_extended_shape; transpose_shape(extended_shape, extended_axes, begin(transposed_extended_shape)); Tensor extended_a(extended_shape); std::memcpy( data(extended_a.mData), data(a.mData), sizeof(ADataType) * a.mDesc.GetElementSpaceSize()); Tensor extended_host_b(transposed_extended_shape); if(!host_permute(extended_a, extended_axes, PassThrough{}, extended_host_b)) { return false; } return ck::utils::check_err( ck::span{reinterpret_cast(data(b.mData)), b.mDesc.GetElementSpaceSize() * NUM_ELEMS_IN_BUNDLE}, ck::span{extended_host_b.mData}, "Error: incorrect results in output tensor", 1e-6, 1e-6); #endif } bool run_permute_example(const Problem::Shape& default_shape, const Problem::Axes& default_axes) { return run_permute(Problem{default_shape, default_axes}); }