#pragma once #include "threadwise_gemm.hip.hpp" // if following number are power of 2, index calculation shall be greatly reduced: // MPerThreadSubC, NPerThreadSubC, MLevel0Cluster, NLevel0Cluster, MLevel1Cluster, NLevel1Cluster template struct BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2 { struct MatrixIndex { index_t row; index_t col; }; index_t mMyThreadOffsetA; index_t mMyThreadOffsetB; __device__ BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2() { constexpr index_t ThreadPerLevel1Cluster = MLevel0Cluster * NLevel0Cluster * MLevel1Cluster * NLevel1Cluster; static_assert(BlockSize == ThreadPerLevel1Cluster, "wrong! wrong blocksize\n"); constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; static_assert(a_block_mtx.NRow() == b_block_mtx.NRow(), "wrong! K dimension not consistent\n"); constexpr index_t M = a_block_mtx.NCol(); // A is transposed constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); static_assert((MPerThread % MPerThreadSubC == 0) && (NPerThread % NPerThreadSubC == 0), "wrong! Cannot evenly divide thread work among repeat \n"); constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; static_assert((M % MRepeat == 0) && (N % NRepeat == 0), "wrong! Cannot evenly divide work among repeat\n"); constexpr index_t MPerLevel1Cluster = M / MRepeat; constexpr index_t NPerLevel1Cluster = N / NRepeat; static_assert((MPerLevel1Cluster % MLevel1Cluster == 0) && (NPerLevel1Cluster % NLevel1Cluster == 0), "wrong! Cannot evenly divide work among Level1Cluster\n"); constexpr index_t MPerLevel0Cluster = MPerLevel1Cluster / MLevel1Cluster; constexpr index_t NPerLevel0Cluster = NPerLevel1Cluster / NLevel1Cluster; static_assert((MPerLevel0Cluster % MLevel0Cluster == 0) && (NPerLevel0Cluster % NLevel0Cluster == 0), "wrong! Cannot evenly divide work among Level0Cluster\n"); static_assert((MPerThreadSubC == MPerLevel0Cluster / MLevel0Cluster) && (NPerThreadSubC == NPerLevel0Cluster / NLevel0Cluster), "wrong! thread work size is wrong\n"); auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id()); mMyThreadOffsetA = a_block_mtx.Get1dIndex(0, c_thread_mtx_index.row); mMyThreadOffsetB = b_block_mtx.Get1dIndex(0, c_thread_mtx_index.col); } __device__ static MatrixIndex GetBeginOfThreadMatrixC(index_t thread_id) { constexpr index_t ThreadPerLevel0Cluster = MLevel0Cluster * NLevel0Cluster; index_t level1_id = thread_id / ThreadPerLevel0Cluster; index_t level1_m_id = level1_id / NLevel1Cluster; index_t level1_n_id = level1_id % NLevel1Cluster; index_t level0_id = thread_id % ThreadPerLevel0Cluster; index_t level0_m_id = level0_id / NLevel0Cluster; index_t level0_n_id = level0_id % NLevel0Cluster; constexpr index_t MPerLevel0Cluster = MPerThreadSubC * MLevel0Cluster; constexpr index_t NPerLevel0Cluster = NPerThreadSubC * NLevel0Cluster; return MatrixIndex{level1_m_id * MPerLevel0Cluster + level0_m_id * MPerThreadSubC, level1_n_id * NPerLevel0Cluster + level0_n_id * NPerThreadSubC}; } // this should be optimized away if input is known __device__ static MatrixIndex GetDistanceFromBeginOfThreadMatrixC(index_t m_in_c, index_t n_in_c) { constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; index_t m_repeat = m_in_c / MPerThreadSubC; index_t n_repeat = n_in_c / NPerThreadSubC; index_t m_in_sub_c = m_in_c % MPerThreadSubC; index_t n_in_sub_c = n_in_c % NPerThreadSubC; return MatrixIndex{m_repeat * MPerLevel1Cluster + m_in_sub_c, n_repeat * NPerLevel1Cluster + n_in_sub_c}; } template __device__ void Run(const FloatA* const __restrict__ p_a_block, const FloatB* const __restrict__ p_b_block, FloatC* const __restrict__ p_c_thread, Accumulator f_accum) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; const FloatA* const p_a_block_thread_offset = p_a_block + mMyThreadOffsetA; #pragma unroll // loop over k for(index_t k_begin = 0; k_begin < K; k_begin += KPerThreadLoop) { #pragma unroll // copy A-sub to form A for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { threadwise_matrix_copy( a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, m_repeat * MPerLevel1Cluster) + mMyThreadOffsetA, a_thread_mtx, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), a_thread_sub_mtx.GetLengths()); } #pragma unroll // copy B-sub to form B for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, n_repeat * NPerLevel1Cluster) + mMyThreadOffsetB, b_thread_mtx, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), b_thread_sub_mtx.GetLengths()); } // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread, f_accum); } } template __device__ void Run_RegisterDoubleBuffer(FloatA* const p_a_block, FloatB* const p_b_block, FloatC* p_c_thread, Accumulator f_accum) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); // register FloatA p_a_thread_0[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread_0[b_thread_mtx.GetElementSpace()]; FloatA p_a_thread_1[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread_1[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; // preload A, B #pragma unroll for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { // copy A-sub to form A threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + m_repeat * MPerLevel1Cluster, a_thread_sub_mtx, p_a_thread_0 + m_repeat * MPerThreadSubC, a_thread_sub_mtx.GetLengths()); } #pragma unroll for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { // copy B-sub to form B threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + n_repeat * NPerLevel1Cluster, b_thread_sub_mtx, p_b_thread_0 + n_repeat * NPerThreadSubC, b_thread_sub_mtx.GetLengths()); } bool even_loop = true; #pragma unroll for(index_t k_begin = 0; k_begin + KPerThreadLoop < K; k_begin += KPerThreadLoop, even_loop = !even_loop) { // loop over k FloatA* p_a_thread_now = even_loop ? p_a_thread_0 : p_a_thread_1; FloatB* p_b_thread_now = even_loop ? p_b_thread_0 : p_b_thread_1; FloatA* p_a_thread_next = even_loop ? p_a_thread_1 : p_a_thread_0; FloatB* p_b_thread_next = even_loop ? p_b_thread_1 : p_b_thread_0; // preload next A, B #pragma unroll for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { // copy A-sub to form A threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + (k_begin + 1) * a_block_mtx.RowStride() + m_repeat * MPerLevel1Cluster, a_thread_sub_mtx, p_a_thread_next + m_repeat * MPerThreadSubC, a_thread_sub_mtx.GetLengths()); } #pragma unroll for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { // copy B-sub to form B threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + (k_begin + 1) * b_block_mtx.RowStride() + n_repeat * NPerLevel1Cluster, b_thread_sub_mtx, p_b_thread_next + n_repeat * NPerThreadSubC, b_thread_sub_mtx.GetLengths()); } // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread_now, b_thread_mtx, False, p_b_thread_now, c_thread_mtx, False, p_c_thread, f_accum); } // last loop { FloatA* p_a_thread_now = even_loop ? p_a_thread_0 : p_a_thread_1; FloatB* p_b_thread_now = even_loop ? p_b_thread_0 : p_b_thread_1; // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread_now, b_thread_mtx, False, p_b_thread_now, c_thread_mtx, False, p_c_thread, f_accum); } } template __device__ void Run_PipelineReadAndCompute(const FloatA* __restrict__ p_a_block, const FloatB* __restrict__ p_b_block, FloatC* __restrict__ p_c_thread, Accumulator f_accum) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A-sub, B-sub, C-sub constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto c_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); // thread A, B constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; #pragma unroll // loop over k for(index_t k_begin = 0; k_begin < K; k_begin += KPerThreadLoop) { // C-sub(s) in first row-wise subblock of C { // copy first A-sub threadwise_matrix_copy(a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, 0) + mMyThreadOffsetA, a_thread_mtx, p_a_thread, a_thread_sub_mtx.GetLengths()); // copy first B-sub threadwise_matrix_copy(b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, 0) + mMyThreadOffsetB, b_thread_mtx, p_b_thread, b_thread_sub_mtx.GetLengths()); // do first sub GEMM threadwise_gemm(a_thread_sub_mtx, True, p_a_thread, b_thread_sub_mtx, False, p_b_thread, c_thread_sub_mtx, False, p_c_thread, f_accum); #pragma unroll // copy next B-sub, and do GEMM for(index_t n_repeat = 1; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, n_repeat * NPerLevel1Cluster) + mMyThreadOffsetB, b_thread_mtx, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), b_thread_sub_mtx.GetLengths()); threadwise_gemm( a_thread_sub_mtx, True, p_a_thread, b_thread_sub_mtx, False, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), c_thread_sub_mtx, False, p_c_thread + c_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), f_accum); } #pragma unroll // loop over rest of row-wise subblock // all B-sub(s) has been copied, so only A-sub(s) need to be copied for(index_t m_repeat = 1; m_repeat < MRepeat; ++m_repeat) { // copy a A-sub threadwise_matrix_copy( a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, m_repeat * MPerLevel1Cluster) + mMyThreadOffsetA, a_thread_mtx, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), a_thread_sub_mtx.GetLengths()); // do some GEMMs for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_gemm( a_thread_sub_mtx, True, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), b_thread_sub_mtx, False, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), c_thread_sub_mtx, False, p_c_thread + c_thread_mtx.Get1dIndex(m_repeat * MPerThreadSubC, n_repeat * NPerThreadSubC), f_accum); } } } } } };