// SPDX-License-Identifier: MIT // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp" using InDataType = ck::half_t; using OutDataType = ck::half_t; using IndexDataType = int32_t; using InLayout = ck::tensor_layout::convolution::NDHWC; using OutLayout = ck::tensor_layout::convolution::NDHWC; constexpr ck::index_t InOutRank = 5; constexpr ck::index_t WindowRank = 3; #if 0 constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX; constexpr bool OutputIndex = false; #else constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG; constexpr bool OutputIndex = false; #endif struct SimpleDeviceMem { SimpleDeviceMem() = delete; SimpleDeviceMem(std::size_t mem_size) : p_mem_{} { (void)hipMalloc(static_cast(&p_mem_), mem_size); } void* GetDeviceBuffer() { return p_mem_; } ~SimpleDeviceMem() { (void)hipFree(p_mem_); } void* p_mem_; }; int main(int argc, char* argv[]) { ck::index_t N = 2; ck::index_t C = 32; ck::index_t Z = 2; ck::index_t Y = 2; ck::index_t X = 2; ck::index_t Di = 30; ck::index_t Hi = 30; ck::index_t Wi = 30; ck::index_t window_stride_d = 2; ck::index_t window_stride_h = 2; ck::index_t window_stride_w = 2; ck::index_t window_dilation_d = 1; ck::index_t window_dilation_h = 1; ck::index_t window_dilation_w = 1; ck::index_t in_left_pad_d = 1; ck::index_t in_left_pad_h = 1; ck::index_t in_left_pad_w = 1; ck::index_t in_right_pad_d = 1; ck::index_t in_right_pad_h = 1; ck::index_t in_right_pad_w = 1; const ck::index_t Zs = (Z - 1) * window_dilation_d + 1; const ck::index_t Ys = (Y - 1) * window_dilation_h + 1; const ck::index_t Xs = (X - 1) * window_dilation_w + 1; ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Zs) / window_stride_d + 1; ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1; ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1; // Pool API only support the order of NCDHW std::vector in_length = {N, C, Di, Hi, Wi}; std::vector out_length = {N, C, Do, Ho, Wo}; std::vector window_spatial_lengths = {Z, Y, X}; std::vector window_strides = {window_stride_d, window_stride_h, window_stride_w}; std::vector window_dilations{ window_dilation_d, window_dilation_h, window_dilation_w}; std::vector input_left_pads = {in_left_pad_d, in_left_pad_h, in_left_pad_w}; std::vector input_right_pads = {in_right_pad_d, in_right_pad_h, in_right_pad_w}; std::size_t in_tensor_size = N * C * Di * Hi * Wi; std::size_t out_tensor_size = N * C * Do * Ho * Wo; // tensor layout = NDHWC std::vector in_tensor_stride = {Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C}; std::vector out_tensor_stride = {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}; SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size); SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size); SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size); using DeviceOp = ck::tensor_operation::device::DevicePoolFwd; // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::string best_op_name; bool found = false; int best_op_id = -1; float best_ave_time = std::numeric_limits::max(); float best_gb_per_sec = 0; // profile device operation instances std::cout << "Run all instances and do timing" << std::endl; for(int i = 0; i < op_ptrs.size(); ++i) { auto& op_ptr = op_ptrs[i]; auto argument_ptr = op_ptr->MakeArgumentPointer( static_cast(in_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), static_cast(out_indices_device_buf.GetDeviceBuffer()), in_length, window_spatial_lengths, out_length, in_tensor_stride, out_tensor_stride, out_tensor_stride, window_strides, window_dilations, input_left_pads, input_right_pads, {2, 3, 4}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); std::size_t num_bytes = in_tensor_size * sizeof(InDataType) + out_tensor_size * sizeof(OutDataType); if constexpr(OutputIndex) num_bytes += out_tensor_size * sizeof(IndexDataType); float gb_per_sec = num_bytes / 1.E6 / ave_time; std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " << op_name << std::endl; if(ave_time < best_ave_time) { found = true; best_op_id = i; best_op_name = op_name; best_ave_time = ave_time; best_gb_per_sec = gb_per_sec; } } else { std::cout << op_name << " does not support this problem" << std::endl; } } // run the best intance if(found) { std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; auto argument_ptr = op_ptr->MakeArgumentPointer( static_cast(in_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), static_cast(out_indices_device_buf.GetDeviceBuffer()), in_length, window_spatial_lengths, out_length, in_tensor_stride, out_tensor_stride, out_tensor_stride, window_strides, window_dilations, input_left_pads, input_right_pads, {2, 3, 4}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); } std::cout << "Done" << std::endl; } return 0; }