#include #include #include #include #include #include #include "config.hpp" #include "print.hpp" #include "device.hpp" #include "host_tensor.hpp" #include "host_tensor_generator.hpp" #include "device_tensor.hpp" #include "tensor_layout.hpp" #include "device_conv_fwd_xdl.hpp" #include "device_conv_fwd_xdl_nhwc_kyxc_nhwk.hpp" struct PassThrough { template __host__ __device__ constexpr T operator()(T v) const { return v; } }; struct Relu { template __host__ __device__ constexpr T operator()(T v) const { T tmp = 0.1 * v; return tmp > 0 ? tmp : 0; } }; using InDataType = ck::half_t; using WeiDataType = ck::half_t; using OutDataType = ck::half_t; using AccDataType = float; template using S = ck::Sequence; using InLayout = ck::tensor_layout::convolution::NHWC; using WeiLayout = ck::tensor_layout::convolution::KYXC; using OutLayout = ck::tensor_layout::convolution::NHWK; using InElementOp = PassThrough; using WeiElementOp = PassThrough; using OutElementOp = Relu; using DeviceConvFwdInstance = // clang-format off //############################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds| //############################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN| //############################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | | //############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ck::tensor_operation::device::DeviceConvFwdXdl< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>; // clang-format on template void host_verify(const Tensor& in, const Tensor& wei, Tensor& out, const std::vector& conv_strides, const std::vector& conv_dilations, const std::vector& in_left_pads, const std::vector&, const InElementOp& in_element_op, const WeiElementOp& wei_element_op, const OutElementOp& out_element_op) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { double v = 0; for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c) { for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y) { int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0]; for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x) { int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1]; if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 && wi < in.mDesc.GetLengths()[3]) { v += in_element_op(static_cast(in(n, c, hi, wi))) * wei_element_op(static_cast(wei(k, c, y, x))); } } } } out(n, k, ho, wo) = out_element_op(v); }; make_ParallelTensorFunctor(f_nchw, out.mDesc.GetLengths()[0], out.mDesc.GetLengths()[1], out.mDesc.GetLengths()[2], out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency()); } int main(int argc, char* argv[]) { if(argc != 4) { printf("arg1: verification (0=no, 1=yes)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg3: run kernel # of times (>1)\n"); exit(0); } const bool do_verification = std::stoi(argv[1]); const int init_method = std::stoi(argv[2]); const int nrepeat = std::stoi(argv[3]); // Conv shape const ck::index_t N = 128; const ck::index_t K = 256; const ck::index_t C = 192; const ck::index_t Y = 3; const ck::index_t X = 3; const ck::index_t Hi = 71; const ck::index_t Wi = 71; const ck::index_t conv_stride_h = 2; const ck::index_t conv_stride_w = 2; const ck::index_t conv_dilation_h = 1; const ck::index_t conv_dilation_w = 1; const ck::index_t in_left_pad_h = 1; const ck::index_t in_left_pad_w = 1; const ck::index_t in_right_pad_h = 1; const ck::index_t in_right_pad_w = 1; const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1; const ck::index_t XEff = (X - 1) * conv_dilation_w + 1; const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1; const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1; const std::vector conv_filter_strides{{conv_stride_h, conv_stride_w}}; const std::vector conv_filter_dilations{{conv_dilation_h, conv_dilation_w}}; const std::vector input_left_pads{{in_left_pad_h, in_left_pad_w}}; const std::vector input_right_pads{{in_right_pad_h, in_right_pad_w}}; // tensor layout auto f_host_tensor_descriptor = [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) { if constexpr(ck::is_same::value || ck::is_same::value || ck::is_same::value) { return HostTensorDescriptor(std::vector({N_, C_, H, W}), std::vector({C_ * H * W, H * W, W, 1})); } else if constexpr(ck::is_same::value || ck::is_same::value || ck::is_same::value) { return HostTensorDescriptor(std::vector({N_, C_, H, W}), std::vector({C_ * H * W, 1, W * C_, C_})); } }; Tensor in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{})); Tensor wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{})); Tensor out_n_k_ho_wo_host_result( f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{})); Tensor out_n_k_ho_wo_device_result( f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{})); std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl; std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl; switch(init_method) { case 0: break; case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5}); wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); } DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace()); DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo_device_result.mDesc.GetElementSpace()); in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); wei_device_buf.ToDevice(wei_k_c_y_x.mData.data()); // do GEMM auto conv = DeviceConvFwdInstance{}; auto invoker = conv.MakeInvoker(); auto argument = conv.MakeArgument(static_cast(in_device_buf.GetDeviceBuffer()), static_cast(wei_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), N, K, C, std::vector{{Hi, Wi}}, std::vector{{Y, X}}, std::vector{{Ho, Wo}}, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}); if(!conv.IsSupportedArgument(argument)) { throw std::runtime_error( "wrong! device_conv with the specified compilation parameters does " "not support this Conv problem"); } float ave_time = invoker.Run(argument, nrepeat); std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(WeiDataType) * (K * C * Y * X) + sizeof(OutDataType) * (N * K * Ho * Wo); float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" << std::endl; if(do_verification) { host_verify(in_n_c_hi_wi, wei_k_c_y_x, out_n_k_ho_wo_host_result, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}); out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data()); check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result); } }