// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/convolution_parameter.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp" void print_helper_msg() { std::cout << "arg1: verification (0=no, 1=yes)\n" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n" << "arg3: time kernel (0=no, 1=yes)\n" << "arg4: N spatial dimensions (default 2)\n" << "Following arguments (depending on number of spatial dims):\n" << " G, N, K, C, \n" << " , (ie Y, X for 2D)\n" << " , (ie Hi, Wi for 2D)\n" << " , (ie Sy, Sx for 2D)\n" << " , (ie Dy, Dx for 2D)\n" << " , (ie LeftPy, LeftPx for 2D)\n" << " , (ie RightPy, RightPx for 2D)\n" << std::endl; } ck::utils::conv::ConvParam parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[]) { const ck::index_t G = std::stoi(argv[arg_idx++]); const ck::index_t N = std::stoi(argv[arg_idx++]); const ck::index_t K = std::stoi(argv[arg_idx++]); const ck::index_t C = std::stoi(argv[arg_idx++]); std::vector filter_spatial_lengths(num_dim_spatial); std::vector input_spatial_lengths(num_dim_spatial); std::vector conv_filter_strides(num_dim_spatial); std::vector conv_filter_dilations(num_dim_spatial); std::vector input_left_pads(num_dim_spatial); std::vector input_right_pads(num_dim_spatial); for(int i = 0; i < num_dim_spatial; ++i) { filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]); } for(int i = 0; i < num_dim_spatial; ++i) { input_spatial_lengths[i] = std::stoi(argv[arg_idx++]); } for(int i = 0; i < num_dim_spatial; ++i) { conv_filter_strides[i] = std::stoi(argv[arg_idx++]); } for(int i = 0; i < num_dim_spatial; ++i) { conv_filter_dilations[i] = std::stoi(argv[arg_idx++]); } for(int i = 0; i < num_dim_spatial; ++i) { input_left_pads[i] = std::stoi(argv[arg_idx++]); } for(int i = 0; i < num_dim_spatial; ++i) { input_right_pads[i] = std::stoi(argv[arg_idx++]); } return ck::utils::conv::ConvParam{num_dim_spatial, G, N, K, C, filter_spatial_lengths, input_spatial_lengths, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads}; } // FIXME: current implementation only support NCHW/NHWC layout template int run_conv_fwd(bool do_verification, int init_method, bool time_kernel, const ck::utils::conv::ConvParam& conv_param, const InElementOp& in_element_op, const WeiElementOp& wei_element_op, const OutElementOp& out_element_op) { const auto in_g_n_c_wis_desc = ck::utils::conv::make_input_host_tensor_descriptor_packed(conv_param); const auto wei_g_k_c_xs_desc = ck::utils::conv::make_weight_host_tensor_descriptor_packed(conv_param); const auto bias_g_n_k_wos_desc = ck::utils::conv::make_output_host_tensor_descriptor_packed(conv_param); const auto out_g_n_k_wos_desc = ck::utils::conv::make_output_host_tensor_descriptor_packed(conv_param); Tensor in(in_g_n_c_wis_desc); Tensor wei(wei_g_k_c_xs_desc); Tensor bias(bias_g_n_k_wos_desc); Tensor out_host(out_g_n_k_wos_desc); Tensor out_device(out_g_n_k_wos_desc); std::cout << "in: " << in.mDesc << std::endl; std::cout << "wei: " << wei.mDesc << std::endl; std::cout << "bias: " << bias.mDesc << std::endl; std::cout << "out: " << out_host.mDesc << std::endl; switch(init_method) { case 0: break; case 1: in.GenerateTensorValue(GeneratorTensor_2{-5, 5}); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}); bias.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); wei.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); bias.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); } DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpace()); DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpace()); DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpace()); in_device_buf.ToDevice(in.mData.data()); wei_device_buf.ToDevice(wei.mData.data()); bias_device_buf.ToDevice(bias.mData.data()); std::array a_g_n_c_wis_lengths{}; std::array a_g_n_c_wis_strides{}; std::array b_g_k_c_xs_lengths{}; std::array b_g_k_c_xs_strides{}; std::array d_g_n_k_wos_lengths{}; std::array d_g_n_k_wos_strides{}; std::array e_g_n_k_wos_lengths{}; std::array e_g_n_k_wos_strides{}; std::array conv_filter_strides{}; std::array conv_filter_dilations{}; std::array input_left_pads{}; std::array input_right_pads{}; auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths); copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides); copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths); copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides); copy(bias_g_n_k_wos_desc.GetLengths(), d_g_n_k_wos_lengths); copy(bias_g_n_k_wos_desc.GetStrides(), d_g_n_k_wos_strides); copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths); copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides); copy(conv_param.conv_filter_strides_, conv_filter_strides); copy(conv_param.conv_filter_dilations_, conv_filter_dilations); copy(conv_param.input_left_pads_, input_left_pads); copy(conv_param.input_right_pads_, input_right_pads); // do GEMM auto conv = DeviceConvNDFwdInstance{}; auto invoker = conv.MakeInvoker(); auto argument = conv.MakeArgument( in_device_buf.GetDeviceBuffer(), wei_device_buf.GetDeviceBuffer(), std::array{bias_device_buf.GetDeviceBuffer()}, out_device_buf.GetDeviceBuffer(), a_g_n_c_wis_lengths, a_g_n_c_wis_strides, b_g_k_c_xs_lengths, b_g_k_c_xs_strides, std::array, 1>{{d_g_n_k_wos_lengths}}, std::array, 1>{{d_g_n_k_wos_strides}}, e_g_n_k_wos_lengths, e_g_n_k_wos_strides, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, in_element_op, wei_element_op, out_element_op); if(!conv.IsSupportedArgument(argument)) { throw std::runtime_error( "wrong! device_conv with the specified compilation parameters does " "not support this Conv problem"); } float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); std::size_t flop = conv_param.GetFlops(); std::size_t num_btype = conv_param.GetByte(); float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_btype / 1.E6 / avg_time; std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << conv.GetTypeString() << std::endl; if(do_verification) { using PassThrough = ck::tensor_operation::element_wise::PassThrough; Tensor c_host(out_g_n_k_wos_desc); auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd(); auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(in, wei, c_host, conv_param.conv_filter_strides_, conv_param.conv_filter_dilations_, conv_param.input_left_pads_, conv_param.input_right_pads_, in_element_op, wei_element_op, PassThrough{}); ref_invoker.Run(ref_argument); // TODO: implement elementwise operation for host out_host.ForEach( [&](auto&, auto idx) { out_element_op(out_host(idx), c_host(idx), bias(idx)); }); out_device_buf.FromDevice(out_device.mData.data()); return ck::utils::check_err( out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f) ? 0 : 1; } return 0; }