Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
f9cf57d4
Commit
f9cf57d4
authored
Jun 07, 2022
by
carlushuang
Browse files
support YXCK filter
parent
71254ddd
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
3299 additions
and
677 deletions
+3299
-677
example/cpu_01_conv2d_fwd/cpu_conv2d_fwd.cpp
example/cpu_01_conv2d_fwd/cpu_conv2d_fwd.cpp
+658
-565
example/cpu_02_conv2d_fwd_bias_relu_add/cpu_conv2d_fwd_bias_relu_add.cpp
...conv2d_fwd_bias_relu_add/cpu_conv2d_fwd_bias_relu_add.cpp
+74
-1
include/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
...ude/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
+10
-4
include/ck/tensor_operation/cpu/device/device_convnd_fwd_avx2_nhwc_yxck_nhwk.hpp
...tion/cpu/device/device_convnd_fwd_avx2_nhwc_yxck_nhwk.hpp
+927
-0
include/ck/tensor_operation/cpu/device/device_convnd_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk.hpp
...ce_convnd_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk.hpp
+992
-0
include/ck/tensor_operation/cpu/thread/threadwise_gemm_avx2.hpp
...e/ck/tensor_operation/cpu/thread/threadwise_gemm_avx2.hpp
+86
-42
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
.../threadwise_tensor_slice_transfer_avx2_specialization.hpp
+132
-0
library/src/tensor_operation_instance/cpu/conv2d_fwd/CMakeLists.txt
...c/tensor_operation_instance/cpu/conv2d_fwd/CMakeLists.txt
+1
-0
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_yxck_nhwk_instance.cpp
...2d_fwd/device_conv2d_fwd_avx2_nhwc_yxck_nhwk_instance.cpp
+229
-0
library/src/tensor_operation_instance/cpu/conv2d_fwd_bias_activation_add/CMakeLists.txt
...nstance/cpu/conv2d_fwd_bias_activation_add/CMakeLists.txt
+1
-0
library/src/tensor_operation_instance/cpu/conv2d_fwd_bias_activation_add/device_conv2d_bias_activation_add_avx2_nhwc_yxck_nhwk_instance.cpp
...nv2d_bias_activation_add_avx2_nhwc_yxck_nhwk_instance.cpp
+144
-0
test/cpu_ukernel/cpu_gemm_uk.cpp
test/cpu_ukernel/cpu_gemm_uk.cpp
+45
-65
No files found.
example/cpu_01_conv2d_fwd/cpu_conv2d_fwd.cpp
View file @
f9cf57d4
#include <sstream>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "element_wise_operation_cpu.hpp"
#include "dynamic_buffer_cpu.hpp"
#include <omp.h>
#define AVX2_DATA_ALIGNMENT 32
#define TEST_FUSION_PASSTHROUGH 0
#define TEST_FUSION_RELU 1
#define TEST_FUSION TEST_FUSION_PASSTHROUGH
#define TEST_LAYOUT_NHWC_KYXC_NHWK 0
#define TEST_LAYOUT_NHWC_KYXCK8_NHWK 1
#define TEST_LAYOUT TEST_LAYOUT_NHWC_KYXCK8_NHWK
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
namespace
device_conv2d_fwd_avx2_instance
{
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
using
InElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
#endif
template
<
typename
T
>
static
bool
check_out
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
,
double
nrms
,
int
per_pixel_check
=
0
)
{
int
error_count
=
0
;
float
max_diff
=
1e-5
;
double
square_difference
=
.0
;
double
mag1
=
.0
;
double
mag2
=
.0
;
for
(
int
i
=
0
;
i
<
ref
.
mData
.
size
();
++
i
)
{
double
ri
=
(
double
)
ref
.
mData
[
i
];
double
pi
=
(
double
)
result
.
mData
[
i
];
double
d
=
ri
-
pi
;
if
(
per_pixel_check
)
{
if
(
max_diff
<
std
::
abs
(
d
))
{
error_count
++
;
printf
(
"idx:%3d, ref:%f, res:%f (diff:%f)
\n
"
,
i
,
double
(
ref
.
mData
[
i
]),
double
(
result
.
mData
[
i
]),
d
);
}
}
square_difference
+=
d
*
d
;
if
(
std
::
abs
(
mag1
)
<
std
::
abs
(
ri
))
mag1
=
ri
;
if
(
std
::
abs
(
mag2
)
<
std
::
abs
(
pi
))
mag2
=
pi
;
}
double
mag
=
std
::
max
({
std
::
fabs
(
mag1
),
std
::
fabs
(
mag2
),
std
::
numeric_limits
<
double
>::
min
()});
double
computed_nrms
=
std
::
sqrt
(
square_difference
)
/
(
std
::
sqrt
(
ref
.
mData
.
size
())
*
mag
);
if
(
computed_nrms
>=
nrms
)
printf
(
"nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f
\n
"
,
computed_nrms
,
mag1
,
mag2
,
nrms
);
return
computed_nrms
<
nrms
&&
error_count
==
0
;
}
float
calculate_gflops
()
{}
template
<
typename
T
>
void
transpose_kyxc_2_kyxc8k
(
Tensor
<
T
>&
dst
,
const
Tensor
<
T
>&
src
,
ck
::
index_t
K
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
C
)
{
ck
::
index_t
batch
=
K
/
8
;
ck
::
index_t
row
=
8
;
ck
::
index_t
col
=
C
*
Y
*
X
;
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
for
(
auto
i_r
=
0
;
i_r
<
row
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
ck
::
index_t
src_idx
=
i_b
*
row
*
col
+
i_r
*
col
+
i_c
;
ck
::
index_t
dst_idx
=
i_b
*
col
*
row
+
i_c
*
row
+
i_r
;
dst
.
mData
[
dst_idx
]
=
src
.
mData
[
src_idx
];
}
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
int
data_type
=
0
;
int
init_method
=
0
;
// Conv shape
ck
::
index_t
N
=
2
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
1
;
ck
::
index_t
conv_stride_w
=
1
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
data_type
=
0
;
init_method
=
1
;
}
else
if
(
argc
==
3
)
{
data_type
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
}
else
if
(
argc
==
18
)
{
data_type
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
N
=
std
::
stoi
(
argv
[
3
]);
K
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
conv_stride_h
=
std
::
stoi
(
argv
[
10
]);
conv_stride_w
=
std
::
stoi
(
argv
[
11
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
13
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
15
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
17
]);
}
else
{
printf
(
"arg1: data type (0=fp32, 1=fp16)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
1
);
}
auto
Run
=
[
&
](
auto
input_type
,
auto
wei_type
,
auto
out_type
)
{
using
InDataType
=
decltype
(
input_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
OutDataType
=
decltype
(
out_type
);
using
ReferenceConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
{{
Hi
,
Wi
}};
const
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
{{
Y
,
X
}};
const
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
{{
Ho
,
Wo
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H_
,
std
::
size_t
W_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H_
,
W_
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H_
*
W_
,
1
,
W_
*
C_
,
C_
}));
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
Tensor
<
WeiDataType
>
wei_k_c_y_x_k8
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
// TODO: This is only to hold data
#endif
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
std
::
cout
<<
"in (N, C, Hi, Wi): "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei(K, C, Y, X): "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out(N, K, Ho, Wo): "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"LPad(H, W):"
<<
in_left_pad_h
<<
","
<<
in_left_pad_w
<<
", RPad(H, W):"
<<
in_right_pad_h
<<
","
<<
in_right_pad_w
<<
", Stride(H, W):"
<<
conv_stride_h
<<
", "
<<
conv_stride_w
<<
", Dilation(H, W):"
<<
conv_dilation_h
<<
", "
<<
conv_dilation_w
<<
", Threads:"
<<
omp_get_max_threads
()
<<
std
::
endl
;
int
per_pixel_check
=
0
;
switch
(
init_method
)
{
case
0
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{});
per_pixel_check
=
1
;
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
// in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
// wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
per_pixel_check
=
1
;
break
;
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
#define PACK_32(v24, v16, v8, v0) \
(((
v24
&
0xff
)
<<
24
)
|
((
v16
&
0xff
)
<<
16
)
|
((
v8
&
0xff
)
<<
8
)
|
((
v0
&
0xff
)
<<
0
))
for
(
auto
i_n
=
0
;
i_n
<
N
;
i_n
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
C
;
i_c
++
)
{
for
(
auto
i_hi
=
0
;
i_hi
<
Hi
;
i_hi
++
)
{
for
(
auto
i_wi
=
0
;
i_wi
<
Wi
;
i_wi
++
)
{
uint32_t
v
=
PACK_32
(
i_n
,
i_c
,
i_hi
,
i_wi
);
in_n_c_hi_wi
(
i_n
,
i_c
,
i_hi
,
i_wi
)
=
*
reinterpret_cast
<
float
*>
(
&
v
);
}
}
}
}
for
(
auto
i_k
=
0
;
i_k
<
K
;
i_k
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
C
;
i_c
++
)
{
for
(
auto
i_y
=
0
;
i_y
<
Y
;
i_y
++
)
{
for
(
auto
i_x
=
0
;
i_x
<
X
;
i_x
++
)
{
uint32_t
v
=
PACK_32
(
i_k
,
i_c
,
i_y
,
i_x
);
wei_k_c_y_x
(
i_k
,
i_c
,
i_y
,
i_x
)
=
*
reinterpret_cast
<
float
*>
(
&
v
);
}
}
}
}
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0
,
1
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1
,
1
});
}
DeviceAlignedMemCPU
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_host_result
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
transpose_kyxc_2_kyxc8k
(
wei_k_c_y_x_k8
,
wei_k_c_y_x
,
K
,
Y
,
X
,
C
);
wei_device_buf
.
ToDevice
(
wei_k_c_y_x_k8
.
mData
.
data
());
#endif
// get host result
{
auto
ref_conv
=
ReferenceConvFwdInstance
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
}
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
cpu
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>
;
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
cpu
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>
;
#endif
// add device Conv instances
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
float
>
)
{
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_FUSION == TEST_FUSION_RELU
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu
(
conv_ptrs
);
}
#endif
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_FUSION == TEST_FUSION_RELU
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu
(
conv_ptrs
);
}
#endif
#endif
}
if
(
conv_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
// profile device Conv instances
bool
success
=
true
;
double
fastest_kernel_time
=
std
::
numeric_limits
<
double
>::
max
();
std
::
string
fastest_kernel_name
=
""
;
double
fastest_kernel_gflops
=
0
;
for
(
auto
&
conv_ptr
:
conv_ptrs
)
{
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
conv_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
auto
invoker_ptr
=
conv_ptr
->
MakeInvokerPointer
();
double
time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{},
10
);
double
total_flop
=
static_cast
<
double
>
(
2
)
*
N
*
C
*
Ho
*
Wo
*
K
*
Y
*
X
;
double
gflops
=
(
total_flop
*
1e-6
)
/
time
;
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
if
(
!
check_out
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
,
1e-6
,
per_pixel_check
))
{
std
::
cout
<<
"Fail Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
success
=
false
;
}
else
{
std
::
cout
<<
"Pass Info: "
<<
conv_ptr
->
GetTypeString
()
<<
", Time:"
<<
time
<<
"ms, Gflops:"
<<
gflops
<<
std
::
endl
;
if
(
time
<
fastest_kernel_time
)
{
fastest_kernel_time
=
time
;
fastest_kernel_name
=
conv_ptr
->
GetTypeString
();
fastest_kernel_gflops
=
gflops
;
}
}
}
else
{
std
::
cout
<<
"Not support Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
}
}
if
(
fastest_kernel_time
!=
std
::
numeric_limits
<
double
>::
max
())
{
std
::
cout
<<
" fastest:"
<<
fastest_kernel_name
<<
", time:"
<<
fastest_kernel_time
<<
"ms, Gflops:"
<<
fastest_kernel_gflops
<<
std
::
endl
;
}
return
0
;
// if(success)
// {
// std::cout << "test conv2d fwd cpu : Pass" << std::endl;
// return 0;
// }
// else
// {
// std::cout << "test conv2d fwd cpu: Fail " << std::endl;
// return -1;
// }
};
if
(
data_type
==
0
)
{
return
Run
(
F32
(),
F32
(),
F32
());
}
else
{
return
1
;
}
}
#include <sstream>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "element_wise_operation_cpu.hpp"
#include "dynamic_buffer_cpu.hpp"
#include <omp.h>
#define AVX2_DATA_ALIGNMENT 32
#define TEST_FUSION_PASSTHROUGH 0
#define TEST_FUSION_RELU 1
#define TEST_FUSION TEST_FUSION_PASSTHROUGH
#define TEST_LAYOUT_NHWC_KYXC_NHWK 0
#define TEST_LAYOUT_NHWC_KYXCK8_NHWK 1
#define TEST_LAYOUT_NHWC_YXCK_NHWK 2
#define TEST_LAYOUT TEST_LAYOUT_NHWC_YXCK_NHWK
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
namespace
device_conv2d_fwd_avx2_instance
{
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
// ------------------ nhwc-kyxc-nhwk
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
// ------------------ nhwc-kcyxk8-nhwk
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
// ------------------ nhwc-yxck-nhwk
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>>&
instances
);
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
using
InElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
#endif
template
<
typename
T
>
static
bool
check_out
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
,
double
nrms
,
int
per_pixel_check
=
0
)
{
int
error_count
=
0
;
float
max_diff
=
1e-5
;
double
square_difference
=
.0
;
double
mag1
=
.0
;
double
mag2
=
.0
;
for
(
int
i
=
0
;
i
<
ref
.
mData
.
size
();
++
i
)
{
double
ri
=
(
double
)
ref
.
mData
[
i
];
double
pi
=
(
double
)
result
.
mData
[
i
];
double
d
=
ri
-
pi
;
if
(
per_pixel_check
)
{
if
(
max_diff
<
std
::
abs
(
d
))
{
error_count
++
;
printf
(
"idx:%3d, ref:%f, res:%f (diff:%f)
\n
"
,
i
,
double
(
ref
.
mData
[
i
]),
double
(
result
.
mData
[
i
]),
d
);
}
}
square_difference
+=
d
*
d
;
if
(
std
::
abs
(
mag1
)
<
std
::
abs
(
ri
))
mag1
=
ri
;
if
(
std
::
abs
(
mag2
)
<
std
::
abs
(
pi
))
mag2
=
pi
;
}
double
mag
=
std
::
max
({
std
::
fabs
(
mag1
),
std
::
fabs
(
mag2
),
std
::
numeric_limits
<
double
>::
min
()});
double
computed_nrms
=
std
::
sqrt
(
square_difference
)
/
(
std
::
sqrt
(
ref
.
mData
.
size
())
*
mag
);
if
(
computed_nrms
>=
nrms
)
printf
(
"nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f
\n
"
,
computed_nrms
,
mag1
,
mag2
,
nrms
);
return
computed_nrms
<
nrms
&&
error_count
==
0
;
}
float
calculate_gflops
()
{}
template
<
typename
T
>
void
transpose_kyxc_2_kyxc8k
(
Tensor
<
T
>&
dst
,
const
Tensor
<
T
>&
src
,
ck
::
index_t
K
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
C
)
{
ck
::
index_t
batch
=
K
/
8
;
ck
::
index_t
row
=
8
;
ck
::
index_t
col
=
C
*
Y
*
X
;
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
for
(
auto
i_r
=
0
;
i_r
<
row
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
ck
::
index_t
src_idx
=
i_b
*
row
*
col
+
i_r
*
col
+
i_c
;
ck
::
index_t
dst_idx
=
i_b
*
col
*
row
+
i_c
*
row
+
i_r
;
dst
.
mData
[
dst_idx
]
=
src
.
mData
[
src_idx
];
}
}
}
}
template
<
typename
T
>
void
transpose_kyxc_2_yxck
(
Tensor
<
T
>&
dst
,
const
Tensor
<
T
>&
src
,
ck
::
index_t
K
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
C
)
{
ck
::
index_t
batch
=
1
;
ck
::
index_t
row
=
K
;
ck
::
index_t
col
=
C
*
Y
*
X
;
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
for
(
auto
i_r
=
0
;
i_r
<
row
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
ck
::
index_t
src_idx
=
i_b
*
row
*
col
+
i_r
*
col
+
i_c
;
ck
::
index_t
dst_idx
=
i_b
*
col
*
row
+
i_c
*
row
+
i_r
;
dst
.
mData
[
dst_idx
]
=
src
.
mData
[
src_idx
];
}
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
int
data_type
=
0
;
int
init_method
=
0
;
// Conv shape
ck
::
index_t
N
=
2
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
1
;
ck
::
index_t
conv_stride_w
=
1
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
data_type
=
0
;
init_method
=
1
;
}
else
if
(
argc
==
3
)
{
data_type
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
}
else
if
(
argc
==
18
)
{
data_type
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
N
=
std
::
stoi
(
argv
[
3
]);
K
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
conv_stride_h
=
std
::
stoi
(
argv
[
10
]);
conv_stride_w
=
std
::
stoi
(
argv
[
11
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
13
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
15
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
17
]);
}
else
{
printf
(
"arg1: data type (0=fp32, 1=fp16)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
1
);
}
auto
Run
=
[
&
](
auto
input_type
,
auto
wei_type
,
auto
out_type
)
{
using
InDataType
=
decltype
(
input_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
OutDataType
=
decltype
(
out_type
);
using
ReferenceConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
{{
Hi
,
Wi
}};
const
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
{{
Y
,
X
}};
const
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
{{
Ho
,
Wo
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H_
,
std
::
size_t
W_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H_
,
W_
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H_
*
W_
,
1
,
W_
*
C_
,
C_
}));
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
Tensor
<
WeiDataType
>
wei_k_c_y_x_k8
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
// TODO: This is only to hold data
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
Tensor
<
WeiDataType
>
wei_y_x_c_k
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
// TODO: This is only to hold data
#endif
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
std
::
cout
<<
"in (N, C, Hi, Wi): "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei(K, C, Y, X): "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out(N, K, Ho, Wo): "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"LPad(H, W):"
<<
in_left_pad_h
<<
","
<<
in_left_pad_w
<<
", RPad(H, W):"
<<
in_right_pad_h
<<
","
<<
in_right_pad_w
<<
", Stride(H, W):"
<<
conv_stride_h
<<
", "
<<
conv_stride_w
<<
", Dilation(H, W):"
<<
conv_dilation_h
<<
", "
<<
conv_dilation_w
<<
", Threads:"
<<
omp_get_max_threads
()
<<
std
::
endl
;
int
per_pixel_check
=
0
;
switch
(
init_method
)
{
case
0
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{});
per_pixel_check
=
1
;
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
// in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
// wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
per_pixel_check
=
1
;
break
;
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
#define PACK_32(v24, v16, v8, v0) \
(((v24 & 0xff) << 24) | ((v16 & 0xff) << 16) | ((v8 & 0xff) << 8) | ((v0 & 0xff) << 0))
for
(
auto
i_n
=
0
;
i_n
<
N
;
i_n
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
C
;
i_c
++
)
{
for
(
auto
i_hi
=
0
;
i_hi
<
Hi
;
i_hi
++
)
{
for
(
auto
i_wi
=
0
;
i_wi
<
Wi
;
i_wi
++
)
{
uint32_t
v
=
PACK_32
(
i_n
,
i_c
,
i_hi
,
i_wi
);
in_n_c_hi_wi
(
i_n
,
i_c
,
i_hi
,
i_wi
)
=
*
reinterpret_cast
<
float
*>
(
&
v
);
}
}
}
}
for
(
auto
i_k
=
0
;
i_k
<
K
;
i_k
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
C
;
i_c
++
)
{
for
(
auto
i_y
=
0
;
i_y
<
Y
;
i_y
++
)
{
for
(
auto
i_x
=
0
;
i_x
<
X
;
i_x
++
)
{
uint32_t
v
=
PACK_32
(
i_k
,
i_c
,
i_y
,
i_x
);
wei_k_c_y_x
(
i_k
,
i_c
,
i_y
,
i_x
)
=
*
reinterpret_cast
<
float
*>
(
&
v
);
}
}
}
}
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0
,
1
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1
,
1
});
}
DeviceAlignedMemCPU
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_host_result
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
transpose_kyxc_2_kyxc8k
(
wei_k_c_y_x_k8
,
wei_k_c_y_x
,
K
,
Y
,
X
,
C
);
wei_device_buf
.
ToDevice
(
wei_k_c_y_x_k8
.
mData
.
data
());
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
transpose_kyxc_2_yxck
(
wei_y_x_c_k
,
wei_k_c_y_x
,
K
,
Y
,
X
,
C
);
wei_device_buf
.
ToDevice
(
wei_y_x_c_k
.
mData
.
data
());
#endif
// get host result
{
auto
ref_conv
=
ReferenceConvFwdInstance
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
}
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
cpu
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>
;
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
cpu
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
Relu
>
;
#endif
// add device Conv instances
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
float
>
)
{
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_FUSION == TEST_FUSION_RELU
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu
(
conv_ptrs
);
}
#endif
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_FUSION == TEST_FUSION_RELU
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu
(
conv_ptrs
);
}
#endif
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_FUSION == TEST_FUSION_RELU
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt_relu
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_relu
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_relu
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c_relu
(
conv_ptrs
);
}
#endif
#endif
}
if
(
conv_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
// profile device Conv instances
bool
success
=
true
;
double
fastest_kernel_time
=
std
::
numeric_limits
<
double
>::
max
();
std
::
string
fastest_kernel_name
=
""
;
double
fastest_kernel_gflops
=
0
;
for
(
auto
&
conv_ptr
:
conv_ptrs
)
{
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
conv_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
auto
invoker_ptr
=
conv_ptr
->
MakeInvokerPointer
();
double
time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{},
10
);
double
total_flop
=
static_cast
<
double
>
(
2
)
*
N
*
C
*
Ho
*
Wo
*
K
*
Y
*
X
;
double
gflops
=
(
total_flop
*
1e-6
)
/
time
;
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
if
(
!
check_out
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
,
1e-6
,
per_pixel_check
))
{
std
::
cout
<<
"Fail Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
success
=
false
;
}
else
{
std
::
cout
<<
"Pass Info: "
<<
conv_ptr
->
GetTypeString
()
<<
", Time:"
<<
time
<<
"ms, Gflops:"
<<
gflops
<<
std
::
endl
;
if
(
time
<
fastest_kernel_time
)
{
fastest_kernel_time
=
time
;
fastest_kernel_name
=
conv_ptr
->
GetTypeString
();
fastest_kernel_gflops
=
gflops
;
}
}
}
else
{
std
::
cout
<<
"Not support Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
}
}
if
(
fastest_kernel_time
!=
std
::
numeric_limits
<
double
>::
max
())
{
std
::
cout
<<
" fastest:"
<<
fastest_kernel_name
<<
", time:"
<<
fastest_kernel_time
<<
"ms, Gflops:"
<<
fastest_kernel_gflops
<<
std
::
endl
;
}
return
0
;
// if(success)
// {
// std::cout << "test conv2d fwd cpu : Pass" << std::endl;
// return 0;
// }
// else
// {
// std::cout << "test conv2d fwd cpu: Fail " << std::endl;
// return -1;
// }
};
if
(
data_type
==
0
)
{
return
Run
(
F32
(),
F32
(),
F32
());
}
else
{
return
1
;
}
}
example/cpu_02_conv2d_fwd_bias_relu_add/cpu_conv2d_fwd_bias_relu_add.cpp
View file @
f9cf57d4
...
...
@@ -16,7 +16,8 @@
#define TEST_LAYOUT_NHWC_KYXC_NHWK 0
#define TEST_LAYOUT_NHWC_KYXCK8_NHWK 1
#define TEST_LAYOUT TEST_LAYOUT_NHWC_KYXCK8_NHWK
#define TEST_LAYOUT_NHWC_YXCK_NHWK 1
#define TEST_LAYOUT TEST_LAYOUT_NHWC_KYXC_NHWK
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
...
...
@@ -30,6 +31,7 @@ namespace device_conv2d_fwd_bias_activation_add_avx2_instance {
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
AddReluAdd
;
// ------------------ nhwc-kyxc-nhwk
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
...
...
@@ -42,6 +44,7 @@ void add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_kyxc_nhwk_mt(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
// ------------------ nhwc-kcyxk8-nhwk
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_kyxck8_nhwk
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
...
...
@@ -54,6 +57,19 @@ void add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_kyxck8_nhwk_mt(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
// ------------------ nhwc-yxck-nhwk
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_mt
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instances
);
}
// namespace device_conv2d_fwd_bias_activation_add_avx2_instance
}
// namespace device
}
// namespace cpu
...
...
@@ -141,6 +157,31 @@ void transpose_kyxc_2_kyxc8k(Tensor<T>& dst,
}
}
template
<
typename
T
>
void
transpose_kyxc_2_yxck
(
Tensor
<
T
>&
dst
,
const
Tensor
<
T
>&
src
,
ck
::
index_t
K
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
C
)
{
ck
::
index_t
batch
=
1
;
ck
::
index_t
row
=
K
;
ck
::
index_t
col
=
C
*
Y
*
X
;
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
for
(
auto
i_r
=
0
;
i_r
<
row
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
ck
::
index_t
src_idx
=
i_b
*
row
*
col
+
i_r
*
col
+
i_c
;
ck
::
index_t
dst_idx
=
i_b
*
col
*
row
+
i_c
*
row
+
i_r
;
dst
.
mData
[
dst_idx
]
=
src
.
mData
[
src_idx
];
}
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
int
data_type
=
0
;
...
...
@@ -243,6 +284,10 @@ int main(int argc, char* argv[])
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
Tensor
<
WeiDataType
>
wei_k_c_y_x_k8
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
// TODO: This is only to hold data
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
Tensor
<
WeiDataType
>
wei_y_x_c_k
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
// TODO: This is only to hold data
#endif
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
...
...
@@ -319,6 +364,10 @@ int main(int argc, char* argv[])
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
transpose_kyxc_2_kyxc8k
(
wei_k_c_y_x_k8
,
wei_k_c_y_x
,
K
,
Y
,
X
,
C
);
wei_device_buf
.
ToDevice
(
wei_k_c_y_x_k8
.
mData
.
data
());
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
transpose_kyxc_2_yxck
(
wei_y_x_c_k
,
wei_k_c_y_x
,
K
,
Y
,
X
,
C
);
wei_device_buf
.
ToDevice
(
wei_y_x_c_k
.
mData
.
data
());
#endif
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
resi_device_buf
.
ToDevice
(
residual
.
mData
.
data
());
...
...
@@ -404,6 +453,30 @@ int main(int argc, char* argv[])
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_kyxck8_nhwk_local_c
(
conv_ptrs
);
}
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_YXCK_NHWK
if
(
omp_get_max_threads
()
>
1
)
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_bias_activation_add_avx2_instance
::
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_bias_activation_add_avx2_instance
::
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_bias_activation_add_avx2_instance
::
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_bias_activation_add_avx2_instance
::
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_local_c
(
conv_ptrs
);
}
#endif
}
...
...
include/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
View file @
f9cf57d4
...
...
@@ -199,8 +199,6 @@ struct BlockwiseGemmAvx2_MxN
auto
ldb
=
GetBLeadingElement
(
b_block_desc
)
*
sizeof
(
FloatB
);
auto
ldc
=
GetCLeadingElement
(
c_desc
)
*
sizeof
(
FloatC
);
// printf("lda:%d, ldb:%d, ldc:%d\n", lda, ldb, ldc);
const
auto
k_per_block
=
a_slice_length
[
Number
<
1
>
{}];
const
auto
m_per_block
=
c_slice_length
[
Number
<
0
>
{}];
const
auto
n_per_block
=
c_slice_length
[
Number
<
1
>
{}];
...
...
@@ -215,8 +213,16 @@ struct BlockwiseGemmAvx2_MxN
param
.
alpha
=
1.0
f
;
// TODO
param
.
accmulate_c
=
is_accumulate_c
?
1
:
0
;
// printf("xxx lda:%u, ldb:%u, ldc:%u, mpb:%u, npb:%u, kpb:%u\n", lda, ldb, ldc,
// m_per_block, n_per_block, k_per_block);
// printf("xxx lda:%u, ldb:%u, ldc:%u, mpb:%u, npb:%u, kpb:%u, mpt:%u, npt:%u\n",
// lda,
// ldb,
// ldc,
// m_per_block,
// n_per_block,
// k_per_block,
// m_per_thread,
// n_per_thread);
// fflush(stdout);
if
constexpr
(
std
::
is_same
<
ThreadMNAccessOrder
,
ck
::
Sequence
<
0
,
1
>>::
value
)
{
...
...
include/ck/tensor_operation/cpu/device/device_convnd_fwd_avx2_nhwc_yxck_nhwk.hpp
0 → 100644
View file @
f9cf57d4
#ifndef DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_HPP
#define DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_HPP
#include <iostream>
#include <sstream>
#include <numeric>
#include "device.hpp"
#include "device_base_cpu.hpp"
#include "device_conv_fwd_cpu.hpp"
#include "convolution_forward_specialization_cpu.hpp"
#include "common_header.hpp"
#include "../../gpu/device/tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_avx2.hpp"
#include "threadwise_gemm_avx2.hpp"
#include "threadwise_tensor_slice_transfer_avx2_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ConvolutionForwardSpecialization_t
ConvForwardSpecialization
,
ConvolutionForwardGemmKSpecialization_t
GemmKSpecialization
,
ConvolutionForwardBlockLoopOverSpecialization_t
BlockLoopOverSpecialization
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
MPerBlock
,
// block means data are designed to fit in cache (L1/L2/L3)
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
MPerThread
,
ck
::
index_t
NPerThread
,
bool
UseALocalBuffer
,
bool
UseBLocalBuffer
,
bool
UseCLocalBuffer
>
struct
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
:
public
DeviceConvFwd
<
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
>
{
using
DeviceOp
=
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
;
using
ADataType
=
InDataType
;
using
BDataType
=
WeiDataType
;
using
CDataType
=
OutDataType
;
using
AElementwiseOperation
=
InElementwiseOperation
;
using
BElementwiseOperation
=
WeiElementwiseOperation
;
using
CElementwiseOperation
=
OutElementwiseOperation
;
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
static
constexpr
index_t
NDimSpatial
=
NumDimSpatial
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
bool
NonTemporalStore
=
false
;
static
constexpr
auto
GetBlockMNKAccessOrder
()
{
if
constexpr
(
BlockLoopOverSpecialization
==
DefaultBlockLoopOver
||
BlockLoopOverSpecialization
==
LoopOver_MNK
)
return
ck
::
Sequence
<
0
,
1
,
2
>
{};
else
if
constexpr
(
BlockLoopOverSpecialization
==
LoopOver_MKN
)
return
ck
::
Sequence
<
0
,
2
,
1
>
{};
}
using
BlockMNKAccessOrder
=
decltype
(
GetBlockMNKAccessOrder
());
static
constexpr
auto
GetThreadwiseGemm_Dispatch
()
{
if
constexpr
(
MPerThread
==
4
&&
NPerThread
==
24
)
{
return
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
<
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
NonTemporalStore
>
{};
}
else
if
constexpr
(
MPerThread
==
6
&&
NPerThread
==
16
)
{
return
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_6x16_Dispatch
<
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
NonTemporalStore
>
{};
}
else
{
// static_assert(false, "invalid Mr/Nr");
}
}
using
ThreadwiseGemm_Dispatch
=
decltype
(
GetThreadwiseGemm_Dispatch
());
static
auto
GetWeightTensorDescriptor
(
ck
::
index_t
gemm_k
,
ck
::
index_t
gemm_n
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_k
,
gemm_n
));
}
static
auto
GetOutputTensorDescriptor
(
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_n
)
{
const
auto
out_gemm_m_n_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_n
));
return
out_gemm_m_n_grid_desc
;
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Wi
=
input_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
X
=
filter_spatial_lengths
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_merge_transform
(
make_tuple
(
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
Y
=
filter_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
1
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
ck
::
index_t
gemm_m_pad
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Di
=
input_spatial_lengths
[
0
];
const
index_t
Hi
=
input_spatial_lengths
[
1
];
const
index_t
Wi
=
input_spatial_lengths
[
2
];
const
index_t
Do
=
output_spatial_lengths
[
0
];
const
index_t
Ho
=
output_spatial_lengths
[
1
];
const
index_t
Wo
=
output_spatial_lengths
[
2
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_do_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Do
),
make_tuple
(
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_do_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
Z
=
filter_spatial_lengths
[
0
];
const
index_t
Y
=
filter_spatial_lengths
[
1
];
const
index_t
X
=
filter_spatial_lengths
[
2
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
static
index_t
GetGemmM
(
ck
::
index_t
N
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
)
{
return
N
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
}
static
index_t
GetGemmK
(
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
)
{
return
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
}
static
index_t
GetGemmN
(
ck
::
index_t
K
)
{
// return ck::math::integer_least_multiple(K,
// ThreadwiseGemm_Dispatch::MatrixBMinVectorSize);
return
K
;
}
static
auto
MakeABCGridDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
using
namespace
ck
;
const
index_t
GemmM
=
GetGemmM
(
N
,
output_spatial_lengths
);
const
index_t
GemmN
=
GetGemmN
(
K
);
const
index_t
GemmK
=
GetGemmK
(
C
,
filter_spatial_lengths
);
// A:
const
auto
in_gemm_m_k_grid_desc
=
GetInputTensorDescriptor
<
NumDimSpatial
>
(
N
,
C
,
GemmM
,
GemmK
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
// B:
const
auto
wei_gemm_k_n_grid_desc
=
GetWeightTensorDescriptor
(
GemmK
,
GemmN
);
// C:
const
auto
out_gemm_m_n_grid_desc
=
GetOutputTensorDescriptor
(
GemmM
,
GemmN
);
return
make_tuple
(
in_gemm_m_k_grid_desc
,
wei_gemm_k_n_grid_desc
,
out_gemm_m_n_grid_desc
);
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
});
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
});
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
});
}
using
ABCGridDescs
=
decltype
(
GetABCGridDesc
<
NumDimSpatial
>
());
using
AGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
using
BGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I1
])
>
;
using
CGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I2
])
>
;
static
constexpr
auto
GetInputBlockDescriptor
()
{
if
constexpr
(
UseALocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
MPerBlock
,
KPerBlock
));
}
else
{
return
AGridDesc
{};
}
}
static
constexpr
auto
GetWeightBlockDescriptor
()
{
if
constexpr
(
UseBLocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
KPerBlock
,
NPerBlock
));
}
else
{
return
BGridDesc
{};
}
}
static
constexpr
auto
GetOutputBlockDescriptor
()
{
if
constexpr
(
UseCLocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
MPerBlock
,
NPerBlock
));
}
else
{
return
CGridDesc
{};
}
}
// static constexpr bool UseCLocalBuffer = false;
using
AThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
<
InDataType
,
InDataType
,
AGridDesc
,
decltype
(
GetInputBlockDescriptor
()),
InElementwiseOperation
,
!
UseALocalBuffer
,
ConvForwardSpecialization
,
GemmKSpecialization
>
;
using
BThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_Wei_YXCK
<
WeiDataType
,
WeiDataType
,
BGridDesc
,
decltype
(
GetWeightBlockDescriptor
()),
WeiElementwiseOperation
,
!
UseBLocalBuffer
,
ConvForwardSpecialization
,
GemmKSpecialization
>
;
using
CThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_MatC_Store_MxN
<
OutDataType
,
OutDataType
,
CGridDesc
,
decltype
(
GetOutputBlockDescriptor
()),
OutElementwiseOperation
,
!
UseCLocalBuffer
,
ConvForwardSpecialization
,
GemmKSpecialization
>
;
using
GridwiseGemm
=
ck
::
cpu
::
GridwiseGemmAvx2_MxN
<
InDataType
,
// InDataType,
WeiDataType
,
// WeiDataType,
OutDataType
,
// OutDataType,
AGridDesc
,
// AGridDesc,
BGridDesc
,
// BGridDesc,
CGridDesc
,
// CGridDesc,
AElementwiseOperation
,
// AElementwiseOperation,
BElementwiseOperation
,
// BElementwiseOperation,
CElementwiseOperation
,
// CElementwiseOperation,
MPerBlock
,
// MPerBlock,
NPerBlock
,
// NPerBlock,
KPerBlock
,
// KPerBlock,
ThreadwiseGemm_Dispatch
,
// ThreadwiseGemm_Dispatch,
AThreadwiseCopy
,
// AThreadwiseCopy
BThreadwiseCopy
,
// BThreadwiseCopy
CThreadwiseCopy
,
// CThreadwiseCopy
BlockMNKAccessOrder
,
// BlockMNKAccessOrder,
ck
::
Sequence
<
0
,
1
>
,
// ThreadMNAccessOrder
UseALocalBuffer
,
// UseALocalBuffer
UseBLocalBuffer
,
// UseBLocalBuffer
UseCLocalBuffer
// UseCLocalBuffer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
:
p_a_grid_
{
p_in_grid
},
p_b_grid_
{
p_wei_grid
},
p_c_grid_
{
p_out_grid
},
a_grid_desc_
{},
b_grid_desc_
{},
c_grid_desc_
{},
a_element_op_
{
in_element_op
},
b_element_op_
{
wei_element_op
},
c_element_op_
{
out_element_op
},
Conv_N_
{
N
},
Conv_K_
{
K
},
Conv_C_
{
C
},
filter_spatial_lengths_
{
filter_spatial_lengths
},
conv_filter_strides_
{
conv_filter_strides
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
const
auto
descs
=
DeviceOp
::
MakeABCGridDescriptor
(
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
a_grid_desc_
=
descs
[
I0
];
b_grid_desc_
=
descs
[
I1
];
c_grid_desc_
=
descs
[
I2
];
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc
a_grid_desc_
;
BGridDesc
b_grid_desc_
;
CGridDesc
c_grid_desc_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
// for checking IsSupportedArgument()
index_t
Conv_N_
;
index_t
Conv_K_
;
index_t
Conv_C_
;
std
::
vector
<
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
index_t
>
conv_filter_strides_
;
std
::
vector
<
index_t
>
input_left_pads_
;
std
::
vector
<
index_t
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{},
int
nrepeat
=
1
)
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmAvx2_MxN has invalid setting"
);
}
memset
(
arg
.
p_c_grid_
,
0
,
arg
.
c_grid_desc_
.
GetElementSpaceSize
());
const
auto
kernel
=
ck
::
cpu
::
kernel_gemm_avx_mxn
<
GridwiseGemm
,
InDataType
,
WeiDataType
,
OutDataType
,
AGridDesc
,
BGridDesc
,
CGridDesc
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
;
float
ave_time
=
0
;
if
(
nrepeat
!=
1
)
ave_time
=
launch_and_time_cpu_kernel
(
kernel
,
nrepeat
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
// TODO: this is for benchmark purpose, so last time we clear c buffer and calculate the
// result
memset
(
arg
.
p_c_grid_
,
0
,
arg
.
c_grid_desc_
.
GetElementSpaceSize
());
launch_cpu_kernel
(
kernel
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
return
ave_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{},
int
nrepeat
=
1
)
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
,
nrepeat
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
if
(
!
(
arg
.
filter_spatial_lengths_
[
0
]
==
1
&&
arg
.
filter_spatial_lengths_
[
1
]
==
1
&&
arg
.
conv_filter_strides_
[
0
]
==
1
&&
arg
.
conv_filter_strides_
[
1
]
==
1
&&
arg
.
input_left_pads_
[
0
]
==
0
&&
arg
.
input_left_pads_
[
1
]
==
0
&&
arg
.
input_right_pads_
[
0
]
==
0
&&
arg
.
input_right_pads_
[
1
]
==
0
))
{
return
false
;
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
if
(
!
(
arg
.
filter_spatial_lengths_
[
0
]
==
1
&&
arg
.
filter_spatial_lengths_
[
1
]
==
1
&&
arg
.
input_left_pads_
[
0
]
==
0
&&
arg
.
input_left_pads_
[
1
]
==
0
&&
arg
.
input_right_pads_
[
0
]
==
0
&&
arg
.
input_right_pads_
[
1
]
==
0
))
{
return
false
;
}
}
if
constexpr
(
GemmKSpecialization
==
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
&&
ConvForwardSpecialization
!=
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
if
(
!
(
arg
.
Conv_C_
%
KPerBlock
==
0
))
return
false
;
}
if
constexpr
(
!
UseALocalBuffer
&&
ConvForwardSpecialization
!=
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
// TODO: We can support this in the future, as long as figure out how to express tensor
// transform
return
false
;
}
if
constexpr
(
!
UseBLocalBuffer
)
{
if
(
!
(
arg
.
Conv_K_
%
8
==
0
))
return
false
;
}
// Gridwise GEMM size
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
{
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_grid
,
const
void
*
p_wei_grid
,
void
*
p_out_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
const
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
OutDataType
*>
(
p_out_grid
),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
auto
string_local_buffer
=
[](
bool
is_local_buffer
)
{
if
(
is_local_buffer
)
return
"L"
;
else
return
"G"
;
};
// clang-format off
str
<<
"DeviceConv"
<<
std
::
to_string
(
NumDimSpatial
)
<<
"DFwdAvx2_NHWC_YXCK"
<<
"_FS"
<<
static_cast
<
int
>
(
ConvForwardSpecialization
)
<<
"_KS"
<<
static_cast
<
int
>
(
GemmKSpecialization
)
<<
"_BS"
<<
static_cast
<
int
>
(
BlockLoopOverSpecialization
)
<<
"_BT"
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
"_TT"
<<
MPerThread
<<
"x"
<<
NPerThread
<<
"_A"
<<
string_local_buffer
(
UseALocalBuffer
)
<<
"_B"
<<
string_local_buffer
(
UseBLocalBuffer
)
<<
"_C"
<<
string_local_buffer
(
UseCLocalBuffer
)
;
if
constexpr
(
!
std
::
is_same
<
OutElementwiseOperation
,
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
>::
value
)
{
str
<<
"_"
<<
OutElementwiseOperation
::
Name
();
}
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
#endif
include/ck/tensor_operation/cpu/device/device_convnd_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk.hpp
0 → 100644
View file @
f9cf57d4
#ifndef DEVICE_CONV2D_FWD_BIAS_ACTIVATION_ADD_AVX2_NHWC_YXCK_NHWK_HPP
#define DEVICE_CONV2D_FWD_BIAS_ACTIVATION_ADD_AVX2_NHWC_YXCK_NHWK_HPP
#include <iostream>
#include <sstream>
#include <numeric>
#include "device.hpp"
#include "device_base_cpu.hpp"
#include "device_conv_fwd_cpu.hpp"
#include "convolution_forward_specialization_cpu.hpp"
#include "common_header.hpp"
#include "../../gpu/device/tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_bias_activation_add_avx2.hpp"
#include "threadwise_gemm_avx2.hpp"
#include "threadwise_tensor_slice_transfer_avx2_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
BiasDataType
,
typename
AddDataType
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ConvolutionForwardSpecialization_t
ConvForwardSpecialization
,
ConvolutionForwardGemmKSpecialization_t
GemmKSpecialization
,
ConvolutionForwardBlockLoopOverSpecialization_t
BlockLoopOverSpecialization
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
MPerBlock
,
// block means data are designed to fit in cache (L1/L2/L3)
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
MPerThread
,
ck
::
index_t
NPerThread
,
bool
UseALocalBuffer
,
bool
UseBLocalBuffer
,
bool
UseCLocalBuffer
,
bool
BiasAlongGemmM
>
struct
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
:
public
DeviceConvFwdBiasActivationAdd
<
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
>
{
using
DeviceOp
=
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
;
using
ADataType
=
InDataType
;
using
BDataType
=
WeiDataType
;
using
CDataType
=
OutDataType
;
using
C0DataType
=
BiasDataType
;
using
C1DataType
=
AddDataType
;
using
AElementwiseOperation
=
InElementwiseOperation
;
using
BElementwiseOperation
=
WeiElementwiseOperation
;
using
CElementwiseOperation
=
OutElementwiseOperation
;
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
static
constexpr
index_t
NDimSpatial
=
NumDimSpatial
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
bool
NonTemporalStore
=
false
;
static
constexpr
auto
GetBlockMNKAccessOrder
()
{
if
constexpr
(
BlockLoopOverSpecialization
==
DefaultBlockLoopOver
||
BlockLoopOverSpecialization
==
LoopOver_MNK
)
return
ck
::
Sequence
<
0
,
1
,
2
>
{};
else
if
constexpr
(
BlockLoopOverSpecialization
==
LoopOver_MKN
)
return
ck
::
Sequence
<
0
,
2
,
1
>
{};
}
using
BlockMNKAccessOrder
=
decltype
(
GetBlockMNKAccessOrder
());
static
constexpr
auto
GetThreadwiseGemm_Dispatch
()
{
if
constexpr
(
MPerThread
==
4
&&
NPerThread
==
24
)
{
return
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
<
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
NonTemporalStore
>
{};
}
else
if
constexpr
(
MPerThread
==
6
&&
NPerThread
==
16
)
{
return
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_6x16_Dispatch
<
InDataType
,
WeiDataType
,
OutDataType
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
NonTemporalStore
>
{};
}
else
{
// static_assert(false, "invalid Mr/Nr");
}
}
using
ThreadwiseGemm_Dispatch
=
decltype
(
GetThreadwiseGemm_Dispatch
());
static
constexpr
auto
GetInputBlockDescriptor
()
{
if
constexpr
(
UseALocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
MPerBlock
,
KPerBlock
));
}
else
{
return
AGridDesc
{};
}
}
static
constexpr
auto
GetWeightBlockDescriptor
()
{
if
constexpr
(
UseBLocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
KPerBlock
,
NPerBlock
));
}
else
{
return
BGridDesc
{};
}
}
static
constexpr
auto
GetOutputBlockDescriptor
()
{
if
constexpr
(
UseCLocalBuffer
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
MPerBlock
,
NPerBlock
));
}
else
{
return
CGridDesc
{};
}
}
static
auto
GetWeightTensorDescriptor
(
ck
::
index_t
gemm_k
,
ck
::
index_t
gemm_n
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_k
,
gemm_n
));
}
static
auto
GetOutputTensorDescriptor
(
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_n
)
{
const
auto
out_gemm_m_n_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_n
));
return
out_gemm_m_n_grid_desc
;
}
static
auto
MakeBiasTensorDescriptor
(
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_n
)
{
if
constexpr
(
BiasAlongGemmM
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
));
}
else
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_n
));
}
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Wi
=
input_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
X
=
filter_spatial_lengths
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_merge_transform
(
make_tuple
(
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
Y
=
filter_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
1
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetInputTensorDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
gemm_m
,
ck
::
index_t
gemm_k
,
ck
::
index_t
gemm_m_pad
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
)
{
const
index_t
Di
=
input_spatial_lengths
[
0
];
const
index_t
Hi
=
input_spatial_lengths
[
1
];
const
index_t
Wi
=
input_spatial_lengths
[
2
];
const
index_t
Do
=
output_spatial_lengths
[
0
];
const
index_t
Ho
=
output_spatial_lengths
[
1
];
const
index_t
Wo
=
output_spatial_lengths
[
2
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
const
auto
in_gemm_m_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
gemm_m
,
gemm_k
));
return
in_gemm_m_k_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_do_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Do
),
make_tuple
(
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_do_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
else
{
const
index_t
Z
=
filter_spatial_lengths
[
0
];
const
index_t
Y
=
filter_spatial_lengths
[
1
];
const
index_t
X
=
filter_spatial_lengths
[
2
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemm_m_k_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
in_gemm_m_k_grid_desc
;
}
}
static
index_t
GetGemmM
(
ck
::
index_t
N
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
)
{
return
N
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
}
static
index_t
GetGemmK
(
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
)
{
return
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
}
static
index_t
GetGemmN
(
ck
::
index_t
K
)
{
// return ck::math::integer_least_multiple(K,
// ThreadwiseGemm_Dispatch::MatrixBMinVectorSize);
return
K
;
}
static
auto
MakeABCGridDescriptor
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
using
namespace
ck
;
const
index_t
GemmM
=
GetGemmM
(
N
,
output_spatial_lengths
);
const
index_t
GemmN
=
GetGemmN
(
K
);
const
index_t
GemmK
=
GetGemmK
(
C
,
filter_spatial_lengths
);
// A:
const
auto
in_gemm_m_k_grid_desc
=
GetInputTensorDescriptor
<
NumDimSpatial
>
(
N
,
C
,
GemmM
,
GemmK
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
// B:
const
auto
wei_gemm_k_n_grid_desc
=
GetWeightTensorDescriptor
(
GemmK
,
GemmN
);
// C:
const
auto
out_gemm_m_n_grid_desc
=
GetOutputTensorDescriptor
(
GemmM
,
GemmN
);
return
make_tuple
(
in_gemm_m_k_grid_desc
,
wei_gemm_k_n_grid_desc
,
out_gemm_m_n_grid_desc
);
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
});
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
});
}
template
<
ck
::
index_t
NDim
,
typename
std
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor
(
1
,
1
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
});
}
using
ABCGridDescs
=
decltype
(
GetABCGridDesc
<
NumDimSpatial
>
());
using
AGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
using
BGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I1
])
>
;
using
CGridDesc
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I2
])
>
;
using
C0GridDesc
=
remove_cvref_t
<
decltype
(
MakeBiasTensorDescriptor
(
1
,
1
))
>
;
using
C1GridDesc
=
CGridDesc
;
// static constexpr bool UseCLocalBuffer = false;
using
AThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
<
ADataType
,
ADataType
,
AGridDesc
,
decltype
(
GetInputBlockDescriptor
()),
InElementwiseOperation
,
!
UseALocalBuffer
,
ConvForwardSpecialization
,
GemmKSpecialization
>
;
using
BThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_Wei_YXCK
<
BDataType
,
BDataType
,
BGridDesc
,
decltype
(
GetWeightBlockDescriptor
()),
WeiElementwiseOperation
,
!
UseBLocalBuffer
,
ConvForwardSpecialization
,
GemmKSpecialization
>
;
using
CThreadwiseCopy
=
ck
::
cpu
::
ThreadwiseTensorSliceTransferAvx2Specialization_MatC_Store_Bias_Residual_MxN
<
CDataType
,
C0DataType
,
C1DataType
,
CDataType
,
CGridDesc
,
C0GridDesc
,
C1GridDesc
,
decltype
(
GetOutputBlockDescriptor
()),
OutElementwiseOperation
,
!
UseCLocalBuffer
,
BiasAlongGemmM
>
;
using
GridwiseGemm
=
ck
::
cpu
::
GridwiseGemmBiasActivationAddAvx2_MxN
<
ADataType
,
// InDataType,
BDataType
,
// WeiDataType,
CDataType
,
// OutDataType,
C0DataType
,
// C0DataType
C1DataType
,
// C1DataType
AGridDesc
,
// AGridDesc,
BGridDesc
,
// BGridDesc,
CGridDesc
,
// CGridDesc,
C0GridDesc
,
// C0GridDesc,
C1GridDesc
,
// C1GridDesc,
AElementwiseOperation
,
// AElementwiseOperation,
BElementwiseOperation
,
// BElementwiseOperation,
CElementwiseOperation
,
// CElementwiseOperation,
MPerBlock
,
// MPerBlock,
NPerBlock
,
// NPerBlock,
KPerBlock
,
// KPerBlock,
ThreadwiseGemm_Dispatch
,
// ThreadwiseGemm_Dispatch,
AThreadwiseCopy
,
// AThreadwiseCopy
BThreadwiseCopy
,
// BThreadwiseCopy
CThreadwiseCopy
,
// CThreadwiseCopy
BlockMNKAccessOrder
,
// BlockMNKAccessOrder,
ck
::
Sequence
<
0
,
1
>
,
// ThreadMNAccessOrder
UseALocalBuffer
,
// UseALocalBuffer
UseBLocalBuffer
,
// UseBLocalBuffer
UseCLocalBuffer
// UseCLocalBuffer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
const
BiasDataType
*
p_bias_grid
,
const
AddDataType
*
p_add_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
:
p_a_grid_
{
p_in_grid
},
p_b_grid_
{
p_wei_grid
},
p_c_grid_
{
p_out_grid
},
p_c0_grid_
{
p_bias_grid
},
p_c1_grid_
{
p_add_grid
},
a_grid_desc_
{},
b_grid_desc_
{},
c_grid_desc_
{},
c0_grid_desc_
{},
c1_grid_desc_
{},
a_element_op_
{
in_element_op
},
b_element_op_
{
wei_element_op
},
c_element_op_
{
out_element_op
},
Conv_N_
{
N
},
Conv_K_
{
K
},
Conv_C_
{
C
},
filter_spatial_lengths_
{
filter_spatial_lengths
},
conv_filter_strides_
{
conv_filter_strides
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
const
auto
descs
=
DeviceOp
::
MakeABCGridDescriptor
(
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
a_grid_desc_
=
descs
[
I0
];
b_grid_desc_
=
descs
[
I1
];
c_grid_desc_
=
descs
[
I2
];
c0_grid_desc_
=
DeviceOp
::
MakeBiasTensorDescriptor
(
GetGemmM
(
N
,
output_spatial_lengths
),
GetGemmN
(
K
));
c1_grid_desc_
=
descs
[
I2
];
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
const
C0DataType
*
p_c0_grid_
;
const
C1DataType
*
p_c1_grid_
;
AGridDesc
a_grid_desc_
;
BGridDesc
b_grid_desc_
;
CGridDesc
c_grid_desc_
;
C0GridDesc
c0_grid_desc_
;
C1GridDesc
c1_grid_desc_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
// for checking IsSupportedArgument()
index_t
Conv_N_
;
index_t
Conv_K_
;
index_t
Conv_C_
;
std
::
vector
<
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
index_t
>
conv_filter_strides_
;
std
::
vector
<
index_t
>
input_left_pads_
;
std
::
vector
<
index_t
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{},
int
nrepeat
=
1
)
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmAvx2_MxN has invalid setting"
);
}
memset
(
arg
.
p_c_grid_
,
0
,
arg
.
c_grid_desc_
.
GetElementSpaceSize
());
const
auto
kernel
=
ck
::
cpu
::
kernel_gemm_bias_activation_add_avx_mxn
<
GridwiseGemm
,
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
C1DataType
,
AGridDesc
,
BGridDesc
,
CGridDesc
,
C0GridDesc
,
C1GridDesc
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
;
float
ave_time
=
0
;
if
(
nrepeat
!=
1
)
ave_time
=
launch_and_time_cpu_kernel
(
kernel
,
nrepeat
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_
,
arg
.
p_c1_grid_
,
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
,
arg
.
c0_grid_desc_
,
arg
.
c1_grid_desc_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
// TODO: this is for benchmark purpose, so last time we clear c buffer and calculate the
// result
memset
(
arg
.
p_c_grid_
,
0
,
arg
.
c_grid_desc_
.
GetElementSpaceSize
());
launch_cpu_kernel
(
kernel
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_
,
arg
.
p_c1_grid_
,
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
,
arg
.
c0_grid_desc_
,
arg
.
c1_grid_desc_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
return
ave_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{},
int
nrepeat
=
1
)
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
,
nrepeat
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
if
(
!
(
arg
.
filter_spatial_lengths_
[
0
]
==
1
&&
arg
.
filter_spatial_lengths_
[
1
]
==
1
&&
arg
.
conv_filter_strides_
[
0
]
==
1
&&
arg
.
conv_filter_strides_
[
1
]
==
1
&&
arg
.
input_left_pads_
[
0
]
==
0
&&
arg
.
input_left_pads_
[
1
]
==
0
&&
arg
.
input_right_pads_
[
0
]
==
0
&&
arg
.
input_right_pads_
[
1
]
==
0
))
{
return
false
;
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
if
(
!
(
arg
.
filter_spatial_lengths_
[
0
]
==
1
&&
arg
.
filter_spatial_lengths_
[
1
]
==
1
&&
arg
.
input_left_pads_
[
0
]
==
0
&&
arg
.
input_left_pads_
[
1
]
==
0
&&
arg
.
input_right_pads_
[
0
]
==
0
&&
arg
.
input_right_pads_
[
1
]
==
0
))
{
return
false
;
}
}
if
constexpr
(
GemmKSpecialization
==
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
&&
ConvForwardSpecialization
!=
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
if
(
!
(
arg
.
Conv_C_
%
KPerBlock
==
0
))
return
false
;
}
if
constexpr
(
!
UseALocalBuffer
&&
ConvForwardSpecialization
!=
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
)
{
// TODO: We can support this in the future, as long as figure out how to express tensor
// transform
return
false
;
}
if
constexpr
(
!
UseBLocalBuffer
)
{
if
(
!
(
arg
.
Conv_K_
%
8
==
0
))
return
false
;
}
// Gridwise GEMM size
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_
,
arg
.
b_grid_desc_
,
arg
.
c_grid_desc_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
const
BiasDataType
*
p_bias_grid
,
const
AddDataType
*
p_add_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
{
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
p_bias_grid
,
p_add_grid
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_grid
,
const
void
*
p_wei_grid
,
void
*
p_out_grid
,
const
void
*
p_bias_grid
,
const
void
*
p_add_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
const
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
OutDataType
*>
(
p_out_grid
),
static_cast
<
const
BiasDataType
*>
(
p_bias_grid
),
static_cast
<
const
AddDataType
*>
(
p_add_grid
),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
auto
string_local_buffer
=
[](
bool
is_local_buffer
)
{
if
(
is_local_buffer
)
return
"L"
;
else
return
"G"
;
};
// clang-format off
str
<<
"DeviceConv"
<<
std
::
to_string
(
NumDimSpatial
)
<<
"DFwd_BAA_Avx2_NHWC_YXCK"
<<
"_FS"
<<
static_cast
<
int
>
(
ConvForwardSpecialization
)
<<
"_KS"
<<
static_cast
<
int
>
(
GemmKSpecialization
)
<<
"_BS"
<<
static_cast
<
int
>
(
BlockLoopOverSpecialization
)
<<
"_BT"
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
"_TT"
<<
MPerThread
<<
"x"
<<
NPerThread
<<
"_A"
<<
string_local_buffer
(
UseALocalBuffer
)
<<
"_B"
<<
string_local_buffer
(
UseBLocalBuffer
)
<<
"_C"
<<
string_local_buffer
(
UseCLocalBuffer
)
;
if
constexpr
(
!
std
::
is_same
<
OutElementwiseOperation
,
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
>::
value
)
{
str
<<
"_"
<<
OutElementwiseOperation
::
Name
();
}
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
#endif
include/ck/tensor_operation/cpu/thread/threadwise_gemm_avx2.hpp
View file @
f9cf57d4
...
...
@@ -81,12 +81,8 @@ struct ThreadwiseGemmAvx2_MxN_6x16
"movq (%[m_param]), %%rax
\n
"
// p_a
"movq 8(%[m_param]), %%rbx
\n
"
// p_b
"movq 24(%[m_param]), %%rsi
\n
"
// Kr
".if m_TransA != 0
\n
"
"movq 32(%[m_param]), %%rcx
\n
"
// lda
".endif
\n
"
".if m_TransB == 0
\n
"
"movq 40(%[m_param]), %%rdx
\n
"
// ldb
".endif
\n
"
".macro vbroadcastss_%= r_base, r_stride, i_scale, i_offset, ymm
\n
"
".if
\\
i_scale != 0
\n
"
...
...
@@ -120,10 +116,14 @@ struct ThreadwiseGemmAvx2_MxN_6x16
".endif
\n
"
".endm
\n
"
".macro vbroadcast_a%= i_k, i_m, ymm
\n
"
// A in rax(r8
, r9
), lda in rcx
".macro vbroadcast_a%= i_k, i_m, ymm
\n
"
// A in rax(r8), lda in rcx
".if m_ABytes == 4
\n
"
".if m_TransA == 0
\n
"
"vbroadcastss_%= %%rax, 0, 0, ((
\\
i_m +
\\
i_k * m_Mr) * m_ABytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1) || (
\\
i_k == 2)
\n
"
"vbroadcastss_%= %%rax, %%rcx,
\\
i_k, (
\\
i_m * m_ABytes),
\\
ymm
\n
"
".else
\n
"
"vbroadcastss_%= %%r8, %%rcx, (
\\
i_k-3), (
\\
i_m * m_ABytes),
\\
ymm
\n
"
".endif
\n
"
".else
\n
"
".if (
\\
i_m == 0) || (
\\
i_m == 1) || (
\\
i_m == 2)
\n
"
"vbroadcastss_%= %%rax, %%rcx,
\\
i_m, (
\\
i_k * m_ABytes),
\\
ymm
\n
"
...
...
@@ -133,7 +133,11 @@ struct ThreadwiseGemmAvx2_MxN_6x16
".endif
\n
"
".else
\n
"
".if m_TransA == 0
\n
"
"vpbroadcastw_%= %%rax, 0, 0, ((
\\
i_m +
\\
i_k * m_Mr) * m_ABytes), %%xmm15
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1) || (
\\
i_k == 2)
\n
"
"vpbroadcastw_%= %%rax, %%rcx,
\\
i_k, (
\\
i_m * m_ABytes), %%xmm15
\n
"
".else
\n
"
"vpbroadcastw_%= %%rax, %%rcx, (
\\
i_k-3), (
\\
i_m * m_ABytes), %%xmm15
\n
"
".endif
\n
"
".else
\n
"
".if (
\\
i_m == 0) || (
\\
i_m == 1) || (
\\
i_m == 2)
\n
"
"vpbroadcastw_%= %%rax, %%rcx,
\\
i_m, (
\\
i_k * m_ABytes), %%xmm15
\n
"
...
...
@@ -145,18 +149,26 @@ struct ThreadwiseGemmAvx2_MxN_6x16
".endif
\n
"
".endm
\n
"
".macro vload_b%= i_k, i_n, ymm
\n
"
// B in rbx, lda in rdx, i_n should be 0, 1
".macro vload_b%= i_k, i_n, ymm
\n
"
// B in rbx
(r9)
, lda in rdx, i_n should be 0, 1
".if m_BBytes == 4
\n
"
".if m_TransB == 0
\n
"
"vmovups_%= %%rbx, %%rdx,
\\
i_n, (
\\
i_k*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vmovups_%= %%rbx, 0, 0, ((
\\
i_k*m_Nr +
\\
i_n*8)*m_BBytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1) || (
\\
i_k == 2)
\n
"
"vmovups_%= %%rbx, %%rdx,
\\
i_k, (
\\
i_n*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vmovups_%= %%r9, %%rdx, (
\\
i_k-3), (
\\
i_n*m_BBytes*8),
\\
ymm
\n
"
".endif
\n
"
".endif
\n
"
".else
\n
"
".if m_TransB == 0
\n
"
"vcvtph2ps_%= %%rbx, %%rdx,
\\
i_n, (
\\
i_k*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vcvtph2ps_%= %%rbx, 0, 0, ((
\\
i_k*m_Nr +
\\
i_n*8)*m_BBytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1) || (
\\
i_k == 2)
\n
"
"vcvtph2ps_%= %%rbx, %%rdx,
\\
i_k, (
\\
i_n*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vcvtph2ps_%= %%r9, %%rdx, (
\\
i_k-3), (
\\
i_n*m_BBytes*8),
\\
ymm
\n
"
".endif
\n
"
".endif
\n
"
".endif
\n
"
".endm
\n
"
...
...
@@ -179,6 +191,13 @@ struct ThreadwiseGemmAvx2_MxN_6x16
"lea (%%rcx, %%rcx, 2), %%r9
\n
"
"lea (%%rax, %%r9), %%r8
\n
"
".endif
\n
"
".else
\n
"
"lea (%%rcx, %%rcx, 2), %%r9
\n
"
"lea (%%rax, %%r9), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
"lea (%%rdx, %%rdx, 2), %%rdi
\n
"
"lea (%%rbx, %%rdi), %%r9
\n
"
".endif
\n
"
"cmp $4, %%rsi
\n
"
...
...
@@ -214,10 +233,12 @@ struct ThreadwiseGemmAvx2_MxN_6x16
" lea 4*m_ABytes(%%rax), %%rax
\n
"
".if m_Mr > 3
\n
lea 4*m_ABytes(%%r8), %%r8
\n
.endif
\n
"
".else
\n
"
" lea m_Mr * 4 * m_ABytes(%%rax), %%rax
\n
"
" lea (%%rax, %%rcx, 4), %%rax
\n
"
" lea (%%r8, %%rcx, 4), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
" lea m_Nr * 4 * m_BBytes(%%rbx), %%rbx
\n
"
" lea (%%rbx, %%rdx, 4), %%rbx
\n
"
" lea (%%r9, %%rdx, 4), %%r9
\n
"
".else
\n
"
" lea 8 * 4 * m_BBytes(%%rbx), %%rbx
\n
"
".endif
\n
"
...
...
@@ -256,10 +277,12 @@ struct ThreadwiseGemmAvx2_MxN_6x16
" lea m_ABytes(%%rax), %%rax
\n
"
".if m_Mr > 3
\n
lea m_ABytes(%%r8), %%r8
\n
.endif
\n
"
".else
\n
"
" lea m_Mr * m_ABytes(%%rax), %%rax
\n
"
" lea (%%rax, %%rcx, 1), %%rax
\n
"
" lea (%%r8, %%rcx, 1), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
" lea m_Nr * m_BBytes(%%rbx), %%rbx
\n
"
" lea (%%rbx, %%rdx, 1), %%rbx
\n
"
" lea (%%r9, %%rdx, 1), %%r9
\n
"
".else
\n
"
" lea 8*m_BBytes(%%rbx), %%rbx
\n
"
".endif
\n
"
...
...
@@ -381,7 +404,7 @@ struct ThreadwiseGemmAvx2_MxN_6x16
}
else
{
ymm
=
_mm256_broadcast_ss
(
p_a
+
i_k
*
Mr
+
i_m
);
ymm
=
_mm256_broadcast_ss
(
p_a
+
i_k
*
lda
+
i_m
);
}
}
else
...
...
@@ -396,7 +419,7 @@ struct ThreadwiseGemmAvx2_MxN_6x16
}
else
{
ymm
=
_mm256_cvtph_ps
(
_mm_set1_epi16
(
*
(
p_a
+
i_k
*
Mr
+
i_m
)));
ymm
=
_mm256_cvtph_ps
(
_mm_set1_epi16
(
*
(
p_a
+
i_k
*
lda
+
i_m
)));
}
}
};
...
...
@@ -406,7 +429,7 @@ struct ThreadwiseGemmAvx2_MxN_6x16
{
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
ymm
=
_mm256_loadu_ps
(
p_b
+
i_k
*
Nr
+
i_n
*
8
);
ymm
=
_mm256_loadu_ps
(
p_b
+
i_k
*
ldb
+
i_n
*
8
);
}
else
{
...
...
@@ -418,7 +441,7 @@ struct ThreadwiseGemmAvx2_MxN_6x16
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
ymm
=
_mm256_cvtph_ps
(
_mm_loadu_si128
(
reinterpret_cast
<
__m128i
const
*>
(
p_b
+
i_k
*
Nr
+
i_n
*
8
)));
reinterpret_cast
<
__m128i
const
*>
(
p_b
+
i_k
*
ldb
+
i_n
*
8
)));
}
else
{
...
...
@@ -488,10 +511,10 @@ struct ThreadwiseGemmAvx2_MxN_6x16
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
){
p_a
+=
4
;
}
else
{
p_a
+=
Mr
*
4
;
p_a
+=
lda
*
4
;
}
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
){
p_b
+=
Nr
*
4
;
p_b
+=
ldb
*
4
;
}
else
{
p_b
+=
4
*
8
;
}
...
...
@@ -525,10 +548,10 @@ struct ThreadwiseGemmAvx2_MxN_6x16
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
){
p_a
+=
1
;
}
else
{
p_a
+=
Mr
*
1
;
p_a
+=
lda
*
1
;
}
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
){
p_b
+=
Nr
*
1
;
p_b
+=
ldb
*
1
;
}
else
{
p_b
+=
1
*
8
;
}
...
...
@@ -641,12 +664,8 @@ struct ThreadwiseGemmAvx2_MxN_4x24
"movq (%[m_param]), %%rax
\n
"
// p_a
"movq 8(%[m_param]), %%rbx
\n
"
// p_b
"movq 24(%[m_param]), %%rsi
\n
"
// Kr
".if m_TransA != 0
\n
"
"movq 32(%[m_param]), %%rcx
\n
"
// lda
".endif
\n
"
".if m_TransB == 0
\n
"
"movq 40(%[m_param]), %%rdx
\n
"
// ldb
".endif
\n
"
".macro vbroadcastss_%= r_base, r_stride, i_scale, i_offset, ymm
\n
"
".if
\\
i_scale != 0
\n
"
...
...
@@ -683,7 +702,11 @@ struct ThreadwiseGemmAvx2_MxN_4x24
".macro vbroadcast_a%= i_k, i_m, ymm
\n
"
// A in rax(r8), lda in rcx
".if m_ABytes == 4
\n
"
".if m_TransA == 0
\n
"
"vbroadcastss_%= %%rax, 0, 0, ((
\\
i_m +
\\
i_k * m_Mr) * m_ABytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1)
\n
"
"vbroadcastss_%= %%rax, %%rcx,
\\
i_k, (
\\
i_m * m_ABytes),
\\
ymm
\n
"
".else
\n
"
"vbroadcastss_%= %%r8, %%rcx, (
\\
i_k-2), (
\\
i_m * m_ABytes),
\\
ymm
\n
"
".endif
\n
"
".else
\n
"
".if (
\\
i_m == 0) || (
\\
i_m == 1)
\n
"
"vbroadcastss_%= %%rax, %%rcx,
\\
i_m, (
\\
i_k * m_ABytes),
\\
ymm
\n
"
...
...
@@ -693,7 +716,11 @@ struct ThreadwiseGemmAvx2_MxN_4x24
".endif
\n
"
".else
\n
"
".if m_TransA == 0
\n
"
"vpbroadcastw_%= %%rax, 0, 0, ((
\\
i_m +
\\
i_k * m_Mr) * m_ABytes), %%xmm15
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1)
\n
"
"vpbroadcastw_%= %%rax, %%rcx,
\\
i_k, (
\\
i_m * m_ABytes), %%xmm15
\n
"
".else
\n
"
"vpbroadcastw_%= %%r8, %%rcx, (
\\
i_k-2), (
\\
i_m * m_ABytes), %%xmm15
\n
"
".endif
\n
"
".else
\n
"
".if (
\\
i_m == 0) || (
\\
i_m == 1)
\n
"
"vpbroadcastw_%= %%rax, %%rcx,
\\
i_m, (
\\
i_k * m_ABytes), %%xmm15
\n
"
...
...
@@ -710,13 +737,21 @@ struct ThreadwiseGemmAvx2_MxN_4x24
".if m_TransB == 0
\n
"
"vmovups_%= %%rbx, %%rdx,
\\
i_n, (
\\
i_k*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vmovups_%= %%rbx, 0, 0, ((
\\
i_k*m_Nr +
\\
i_n*8)*m_BBytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1)
\n
"
"vmovups_%= %%rbx, %%rdx,
\\
i_k, (
\\
i_n*8*m_BBytes),
\\
ymm
\n
"
".else
\n
"
"vmovups_%= %%rdi, %%rdx, (
\\
i_k-2), (
\\
i_n*8*m_BBytes),
\\
ymm
\n
"
".endif
\n
"
".endif
\n
"
".else
\n
"
".if m_TransB == 0
\n
"
"vcvtph2ps_%= %%rbx, %%rdx,
\\
i_n, (
\\
i_k*m_BBytes*8),
\\
ymm
\n
"
".else
\n
"
"vcvtph2ps_%= %%rbx, 0, 0, ((
\\
i_k*m_Nr +
\\
i_n*8)*m_BBytes),
\\
ymm
\n
"
".if (
\\
i_k == 0) || (
\\
i_k == 1)
\n
"
"vcvtph2ps_%= %%rbx, %%rdx,
\\
i_k, (
\\
i_n*8*m_BBytes),
\\
ymm
\n
"
".else
\n
"
"vcvtph2ps_%= %%rdi, %%rdx, (
\\
i_k-2), (
\\
i_n*8*m_BBytes),
\\
ymm
\n
"
".endif
\n
"
".endif
\n
"
".endif
\n
"
".endm
\n
"
...
...
@@ -738,6 +773,11 @@ struct ThreadwiseGemmAvx2_MxN_4x24
".if m_Mr > 2
\n
"
"lea (%%rax, %%rcx, 2), %%r8
\n
"
".endif
\n
"
".else
\n
"
"lea (%%rax, %%rcx, 2), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
"lea (%%rbx, %%rdx, 2), %%rdi
\n
"
".endif
\n
"
"cmp $4, %%rsi
\n
"
...
...
@@ -773,10 +813,12 @@ struct ThreadwiseGemmAvx2_MxN_4x24
" lea 4*m_ABytes(%%rax), %%rax
\n
"
".if m_Mr > 2
\n
lea 4*m_ABytes(%%r8), %%r8
\n
.endif
\n
"
".else
\n
"
" lea m_Mr * 4 * m_ABytes(%%rax), %%rax
\n
"
" lea (%%rax, %%rcx, 4), %%rax
\n
"
" lea (%%r8, %%rcx, 4), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
" lea m_Nr * 4 * m_BBytes(%%rbx), %%rbx
\n
"
" lea (%%rbx, %%rdx, 4), %%rbx
\n
"
" lea (%%rdi, %%rdx, 4), %%rdi
\n
"
".else
\n
"
" lea 8 * 4 * m_BBytes(%%rbx), %%rbx
\n
"
".endif
\n
"
...
...
@@ -815,10 +857,12 @@ struct ThreadwiseGemmAvx2_MxN_4x24
" lea m_ABytes(%%rax), %%rax
\n
"
".if m_Mr > 3
\n
lea m_ABytes(%%r8), %%r8
\n
.endif
\n
"
".else
\n
"
" lea m_Mr * m_ABytes(%%rax), %%rax
\n
"
" lea (%%rax, %%rcx, 1), %%rax
\n
"
" lea (%%r8, %%rcx, 1), %%r8
\n
"
".endif
\n
"
".if m_TransB != 0
\n
"
" lea m_Nr * m_BBytes(%%rbx), %%rbx
\n
"
" lea (%%rbx, %%rdx, 1), %%rbx
\n
"
" lea (%%rdi, %%rdx, 1), %%rdi
\n
"
".else
\n
"
" lea 8*m_BBytes(%%rbx), %%rbx
\n
"
".endif
\n
"
...
...
@@ -937,7 +981,7 @@ struct ThreadwiseGemmAvx2_MxN_4x24
}
else
{
ymm
=
_mm256_broadcast_ss
(
p_a
+
i_k
*
Mr
+
i_m
);
ymm
=
_mm256_broadcast_ss
(
p_a
+
i_k
*
lda
+
i_m
);
}
}
else
...
...
@@ -952,7 +996,7 @@ struct ThreadwiseGemmAvx2_MxN_4x24
}
else
{
ymm
=
_mm256_cvtph_ps
(
_mm_set1_epi16
(
*
(
p_a
+
i_k
*
Mr
+
i_m
)));
ymm
=
_mm256_cvtph_ps
(
_mm_set1_epi16
(
*
(
p_a
+
i_k
*
lda
+
i_m
)));
}
}
};
...
...
@@ -962,7 +1006,7 @@ struct ThreadwiseGemmAvx2_MxN_4x24
{
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
ymm
=
_mm256_loadu_ps
(
p_b
+
i_k
*
Nr
+
i_n
*
8
);
ymm
=
_mm256_loadu_ps
(
p_b
+
i_k
*
ldb
+
i_n
*
8
);
}
else
{
...
...
@@ -974,7 +1018,7 @@ struct ThreadwiseGemmAvx2_MxN_4x24
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
ymm
=
_mm256_cvtph_ps
(
_mm_loadu_si128
(
reinterpret_cast
<
__m128i
const
*>
(
p_b
+
i_k
*
Nr
+
i_n
*
8
)));
reinterpret_cast
<
__m128i
const
*>
(
p_b
+
i_k
*
ldb
+
i_n
*
8
)));
}
else
{
...
...
@@ -1044,10 +1088,10 @@ struct ThreadwiseGemmAvx2_MxN_4x24
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
){
p_a
+=
4
;
}
else
{
p_a
+=
Mr
*
4
;
p_a
+=
lda
*
4
;
}
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
){
p_b
+=
Nr
*
4
;
p_b
+=
ldb
*
4
;
}
else
{
p_b
+=
4
*
8
;
}
...
...
@@ -1081,10 +1125,10 @@ struct ThreadwiseGemmAvx2_MxN_4x24
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
){
p_a
+=
1
;
}
else
{
p_a
+=
Mr
*
1
;
p_a
+=
lda
*
1
;
}
if
constexpr
(
std
::
is_same
<
ck
::
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
){
p_b
+=
Nr
*
1
;
p_b
+=
ldb
*
1
;
}
else
{
p_b
+=
1
*
8
;
}
...
...
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
View file @
f9cf57d4
...
...
@@ -1277,6 +1277,138 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_Wei_KYXCK8
intptr_t
src_offset
;
};
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
ElementwiseOperation
,
bool
BypassTransfer
,
ConvolutionForwardSpecialization_t
ConvForwardSpecialization
,
ConvolutionForwardGemmKSpecialization_t
GemmKSpecialization
>
struct
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_Wei_YXCK
{
static
constexpr
ck
::
index_t
nDim
=
SrcDesc
::
GetNumOfDimension
();
using
Index
=
MultiIndex
<
nDim
>
;
constexpr
ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_Wei_YXCK
(
const
SrcDesc
&
src_desc
,
const
Index
&
,
const
DstDesc
&
,
const
Index
&
,
const
ElementwiseOperation
&
element_op
)
:
element_op_
(
element_op
)
{
GemmK
=
src_desc
.
GetTransforms
()[
Number
<
0
>
{}].
GetUpperLengths
()[
Number
<
0
>
{}];
GemmN
=
src_desc
.
GetTransforms
()[
Number
<
0
>
{}].
GetUpperLengths
()[
Number
<
1
>
{}];
}
void
SetSrcSliceOrigin
(
const
SrcDesc
&
,
const
Index
&
src_slice_origin_idx
)
{
ck
::
index_t
idx_k
=
src_slice_origin_idx
[
Number
<
0
>
{}];
ck
::
index_t
idx_n
=
src_slice_origin_idx
[
Number
<
1
>
{}];
src_offset
=
idx_k
*
GemmN
+
idx_n
;
}
void
SetDstSliceOrigin
(
const
DstDesc
&
,
const
Index
&
)
{}
template
<
typename
SrcBuffer
,
typename
DstBuffer
,
typename
SliceLengths
>
void
RunRead
(
const
SrcDesc
&
,
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
const
SliceLengths
&
slice_length
)
{
if
constexpr
(
BypassTransfer
)
{
dst_buf
.
p_data_
=
reinterpret_cast
<
float
*>
(
src_buf
.
p_data_
)
+
src_offset
;
}
else
{
const
ck
::
index_t
k_per_block
=
slice_length
[
Number
<
0
>
{}];
const
ck
::
index_t
n_per_block
=
slice_length
[
Number
<
1
>
{}];
const
float
*
p_src
=
reinterpret_cast
<
const
float
*>
(
src_buf
.
p_data_
)
+
src_offset
;
float
*
p_dst
=
reinterpret_cast
<
float
*>
(
dst_buf
.
p_data_
);
// k * n
index_t
i_k_itr
=
k_per_block
;
while
(
i_k_itr
>=
8
)
{
avx2_util
::
memcpy32_avx2
(
p_dst
+
0
*
n_per_block
,
p_src
+
0
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
1
*
n_per_block
,
p_src
+
1
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
2
*
n_per_block
,
p_src
+
2
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
3
*
n_per_block
,
p_src
+
3
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
4
*
n_per_block
,
p_src
+
4
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
5
*
n_per_block
,
p_src
+
5
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
6
*
n_per_block
,
p_src
+
6
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
7
*
n_per_block
,
p_src
+
7
*
GemmN
,
n_per_block
,
element_op_
);
i_k_itr
-=
8
;
p_dst
+=
8
*
n_per_block
;
p_src
+=
8
*
GemmN
;
}
if
(
i_k_itr
&
4
)
{
avx2_util
::
memcpy32_avx2
(
p_dst
+
0
*
n_per_block
,
p_src
+
0
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
1
*
n_per_block
,
p_src
+
1
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
2
*
n_per_block
,
p_src
+
2
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
3
*
n_per_block
,
p_src
+
3
*
GemmN
,
n_per_block
,
element_op_
);
p_dst
+=
4
*
n_per_block
;
p_src
+=
4
*
GemmN
;
}
if
(
i_k_itr
&
2
)
{
avx2_util
::
memcpy32_avx2
(
p_dst
+
0
*
n_per_block
,
p_src
+
0
*
GemmN
,
n_per_block
,
element_op_
);
avx2_util
::
memcpy32_avx2
(
p_dst
+
1
*
n_per_block
,
p_src
+
1
*
GemmN
,
n_per_block
,
element_op_
);
p_dst
+=
2
*
n_per_block
;
p_src
+=
2
*
GemmN
;
}
if
(
i_k_itr
&
1
)
{
avx2_util
::
memcpy32_avx2
(
p_dst
+
0
*
n_per_block
,
p_src
+
0
*
GemmN
,
n_per_block
,
element_op_
);
}
}
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
ck
::
index_t
move_k
=
src_slice_origin_step_idx
[
Number
<
0
>
{}];
ck
::
index_t
move_n
=
src_slice_origin_step_idx
[
Number
<
1
>
{}];
src_offset
+=
move_k
*
GemmN
+
move_n
;
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
void
MoveDstSliceWindow
(
const
DstDesc
&
,
const
Index
&
)
{}
private:
const
ElementwiseOperation
element_op_
;
ck
::
index_t
GemmN
;
ck
::
index_t
GemmK
;
intptr_t
src_offset
;
};
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
...
...
library/src/tensor_operation_instance/cpu/conv2d_fwd/CMakeLists.txt
View file @
f9cf57d4
...
...
@@ -2,6 +2,7 @@
set
(
DEVICE_CONV2D_FWD_CPU_INSTANCE_SOURCE
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_instance.cpp
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_instance.cpp
)
add_library
(
device_conv2d_fwd_cpu_instance SHARED
${
DEVICE_CONV2D_FWD_CPU_INSTANCE_SOURCE
}
)
target_compile_features
(
device_conv2d_fwd_cpu_instance PUBLIC
)
...
...
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_yxck_nhwk_instance.cpp
0 → 100644
View file @
f9cf57d4
#include <stdlib.h>
#include "config.hpp"
#include "convolution_forward_specialization_cpu.hpp"
#include "device_convnd_fwd_avx2_nhwc_yxck_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
namespace
device_conv2d_fwd_avx2_instance
{
using
InType
=
float
;
using
WeiType
=
float
;
using
OutType
=
float
;
using
AccType
=
float
;
static
constexpr
bool
NonTemporalStore
=
false
;
using
PT
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
Relu
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
DefaultGemmKLoop
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
DefaultGemmKLoop
;
static
constexpr
auto
GemmKLoopOverC
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
;
static
constexpr
auto
LoopOver_MNK
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MNK
;
static
constexpr
auto
LoopOver_MKN
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MKN
;
// clang-format off
#define DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32(a_elem_op, b_elem_op, c_elem_op, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, c_local_buf) \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
false
,
false
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
false
,
c_local_buf
>
,
\
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
false
,
false
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
false
,
c_local_buf
>
// clang-format on
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
64
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
false
)
>
;
// clang-format on
// use this in single thread, but gemm_n is not multiple of 8
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_local_c_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
64
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
)
>
;
// clang-format on
// use this in multi thread environment (need local C buffer to avoid cache coherence, although some
// time no local c is better...)
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_mt_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
24
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
32
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
40
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
48
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
48
,
48
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
56
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
16
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
16
,
256
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
32
,
256
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
96
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
96
,
64
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
120
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
120
,
64
,
128
,
6
,
16
,
false
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32(PT, PT, PT, 256, 128, 64, 6, 16, true),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
)
>
;
// clang-format on
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_relu_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
256
,
128
,
64
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
256
,
128
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
128
,
256
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
240
,
128
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
256
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
768
,
320
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
896
,
352
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
1024
,
416
,
128
,
6
,
16
,
false
)
>
;
// clang-format on
// use this in single thread, but gemm_n is not multiple of 8
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_local_c_relu_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
256
,
128
,
64
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
256
,
128
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
128
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
240
,
128
,
4
,
24
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
768
,
320
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
896
,
352
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
1024
,
416
,
128
,
6
,
16
,
true
)
>
;
// clang-format on
// use this in multi thread environment (need local C buffer to avoid cache coherence, although some
// time no local c is better...)
using
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_mt_relu_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
24
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
32
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
40
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
24
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
32
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
40
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
48
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
48
,
48
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
56
,
24
,
256
,
4
,
24
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
72
,
16
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
72
,
16
,
256
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
72
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
72
,
32
,
256
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
96
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
96
,
64
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
120
,
32
,
128
,
6
,
16
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
120
,
64
,
128
,
6
,
16
,
false
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32(PT, PT, PT, 256, 128, 64, 6, 16, true),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
256
,
128
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
128
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
240
,
128
,
4
,
24
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
512
,
256
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
768
,
320
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
896
,
352
,
128
,
6
,
16
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
Relu
,
1024
,
416
,
128
,
6
,
16
,
true
)
>
;
// clang-format on
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_local_c_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_mt_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
Relu
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_relu_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_local_c_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
Relu
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_local_c_relu_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_yxck_nhwk_mt_relu
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
Relu
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_yxck_nhwk_f32_mt_relu_instances
{});
}
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/cpu/conv2d_fwd_bias_activation_add/CMakeLists.txt
View file @
f9cf57d4
...
...
@@ -2,6 +2,7 @@
set
(
DEVICE_CONV2D_FWD_CPU_INSTANCE_SOURCE
device_conv2d_bias_activation_add_avx2_nhwc_kyxc_nhwk_instance.cpp
device_conv2d_bias_activation_add_avx2_nhwc_kyxck8_nhwk_instance.cpp
device_conv2d_bias_activation_add_avx2_nhwc_yxck_nhwk_instance.cpp
)
add_library
(
device_conv2d_fwd_bias_activation_add_cpu_instance SHARED
${
DEVICE_CONV2D_FWD_CPU_INSTANCE_SOURCE
}
)
target_compile_features
(
device_conv2d_fwd_bias_activation_add_cpu_instance PUBLIC
)
...
...
library/src/tensor_operation_instance/cpu/conv2d_fwd_bias_activation_add/device_conv2d_bias_activation_add_avx2_nhwc_yxck_nhwk_instance.cpp
0 → 100644
View file @
f9cf57d4
#include <stdlib.h>
#include "config.hpp"
#include "convolution_forward_specialization_cpu.hpp"
#include "device_convnd_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_add_avx2_instance
{
using
InType
=
float
;
using
WeiType
=
float
;
using
OutType
=
float
;
using
AccType
=
float
;
static
constexpr
bool
NonTemporalStore
=
false
;
using
PT
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
DefaultGemmKLoop
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
DefaultGemmKLoop
;
static
constexpr
auto
GemmKLoopOverC
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
;
static
constexpr
auto
LoopOver_MNK
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MNK
;
static
constexpr
auto
LoopOver_MKN
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MKN
;
// clang-format off
#define DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32(a_elem_op, b_elem_op, c_elem_op, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, c_local_buf, bias_along_m) \
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
false
,
false
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
false
,
c_local_buf
,
bias_along_m
>
,
\
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
true
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1S1P0
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
false
,
false
,
c_local_buf
,
bias_along_m
>
,
\
DeviceConvNDFwdBiasActivationAddAvx2_Input_N_Hi_Wi_C_Weight_Y_X_C_K_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
true
,
false
,
c_local_buf
,
bias_along_m
>
// clang-format on
using
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
256
,
128
,
64
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
256
,
128
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
128
,
256
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
240
,
128
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
256
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
768
,
320
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
896
,
352
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
1024
,
416
,
128
,
6
,
16
,
false
,
false
)
>
;
// clang-format on
// use this in single thread, but gemm_n is not multiple of 8
using
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_local_c_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
256
,
128
,
64
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
256
,
128
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
128
,
256
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
240
,
128
,
4
,
24
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
256
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
768
,
320
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
896
,
352
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
1024
,
416
,
128
,
6
,
16
,
true
,
false
)
>
;
// clang-format on
// use this in multi thread environment (need local C buffer to avoid cache coherence, although some
// time no local c is better...)
using
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_mt_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
24
,
24
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
32
,
24
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
40
,
24
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
48
,
24
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
48
,
48
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
56
,
24
,
256
,
4
,
24
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
72
,
16
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
72
,
16
,
256
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
72
,
32
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
72
,
32
,
256
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
96
,
32
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
96
,
64
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
120
,
32
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
120
,
64
,
128
,
6
,
16
,
false
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
256
,
128
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
128
,
256
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
240
,
128
,
4
,
24
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
512
,
256
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
768
,
320
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
896
,
352
,
128
,
6
,
16
,
true
,
false
),
DEVICE_CONV2D_FWD_BAA_AVX2_NHWC_YXCK_NHWK_F32
(
PT
,
PT
,
AddReluAdd
,
1024
,
416
,
128
,
6
,
16
,
true
,
false
)
>
;
// clang-format on
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PT
,
PT
,
AddReluAdd
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_instances
{});
}
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PT
,
PT
,
AddReluAdd
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_local_c_instances
{});
}
void
add_device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_mt
(
std
::
vector
<
DeviceConvFwdBiasActivationAddPtr
<
PT
,
PT
,
AddReluAdd
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_bias_activation_add_avx2_nhwc_yxck_nhwk_f32_mt_instances
{});
}
}
// namespace device_conv2d_fwd_bias_activation_add_avx2_instance
}
// namespace device
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace ck
test/cpu_ukernel/cpu_gemm_uk.cpp
View file @
f9cf57d4
...
...
@@ -233,68 +233,30 @@ void test_ukernel(ukenrel_t uk,
int
max_threads
=
omp_get_max_threads
();
auto
invoke_uk
=
[
&
](
ck
::
cpu
::
ThreadwiseGemmParam
&
param
,
float
*
current_mat_c
)
{
if
constexpr
(
std
::
is_same
<
Row
,
ALayout
>::
value
&&
std
::
is_same
<
Row
,
BLayout
>::
value
)
assert
(
m
%
uk
.
ThreadMr
==
0
&&
n
%
uk
.
ThreadNr
==
0
);
for
(
uint32_t
i_m
=
0
;
i_m
<
m
;
i_m
+=
uk
.
ThreadMr
)
{
assert
(
m
%
uk
.
ThreadMr
==
0
&&
n
==
uk
.
ThreadNr
);
FloatA
*
p_a
=
mat_a
;
float
*
p_c
=
current_mat_c
;
param
.
p_a
=
p_a
;
param
.
p_c
=
p_c
;
for
(
uint32_t
i_m
=
0
;
i_m
<
m
;
i_m
+=
uk
.
ThreadMr
)
if
constexpr
(
std
::
is_same
<
Row
,
ALayout
>::
value
)
{
uk
.
Run
(
&
param
);
p_a
+=
uk
.
ThreadMr
*
k
;
p_c
+=
uk
.
ThreadMr
*
n
;
param
.
p_a
=
p_a
;
param
.
p_c
=
p_c
;
param
.
p_a
=
mat_a
+
i_m
*
k
;
}
}
else
if
constexpr
(
std
::
is_same
<
Row
,
ALayout
>::
value
&&
std
::
is_same
<
Col
,
BLayout
>::
value
)
{
assert
(
m
%
uk
.
ThreadMr
==
0
&&
n
%
uk
.
ThreadNr
==
0
);
FloatA
*
p_a
=
mat_a
;
float
*
p_c
=
current_mat_c
;
param
.
p_a
=
p_a
;
param
.
p_b
=
mat_b
;
param
.
p_c
=
p_c
;
for
(
uint32_t
i_m
=
0
;
i_m
<
m
;
i_m
+=
uk
.
ThreadMr
)
else
{
float
*
p_c_n
=
p_c
;
FloatB
*
p_b_n
=
mat_b
;
for
(
uint32_t
i_n
=
0
;
i_n
<
n
;
i_n
+=
uk
.
ThreadNr
)
{
uk
.
Run
(
&
param
);
p_b_n
+=
uk
.
ThreadNr
*
k
;
// ThreadNr/8*k*8
p_c_n
+=
uk
.
ThreadNr
;
param
.
p_b
=
p_b_n
;
param
.
p_c
=
p_c_n
;
}
p_a
+=
uk
.
ThreadMr
*
k
;
p_c
+=
uk
.
ThreadMr
*
n
;
param
.
p_a
=
p_a
;
param
.
p_b
=
mat_b
;
param
.
p_c
=
p_c
;
param
.
p_a
=
mat_a
+
i_m
;
}
}
else
if
constexpr
(
std
::
is_same
<
Col
,
ALayout
>::
value
&&
std
::
is_same
<
Row
,
BLayout
>::
value
)
{
assert
(
m
==
uk
.
ThreadMr
&&
n
==
uk
.
ThreadNr
);
uk
.
Run
(
&
param
);
}
else
{
assert
(
m
%
uk
.
ThreadMr
==
0
&&
n
%
uk
.
ThreadNr
==
0
);
FloatB
*
p_b
=
mat_b
;
float
*
p_c
=
current_mat_c
;
param
.
p_b
=
p_b
;
param
.
p_c
=
p_c
;
for
(
uint32_t
i_n
=
0
;
i_n
<
n
;
i_n
+=
uk
.
ThreadNr
)
{
if
constexpr
(
std
::
is_same
<
Row
,
BLayout
>::
value
)
{
param
.
p_b
=
mat_b
+
i_n
;
}
else
{
param
.
p_b
=
mat_b
+
i_n
*
k
;
}
param
.
p_c
=
current_mat_c
+
i_m
*
n
+
i_n
;
uk
.
Run
(
&
param
);
p_b
+=
uk
.
ThreadNr
*
k
;
// ThreadNr/8*k*8
p_c
+=
uk
.
ThreadNr
;
param
.
p_b
=
p_b
;
param
.
p_c
=
p_c
;
}
}
};
...
...
@@ -358,7 +320,11 @@ void test_ukernel(ukenrel_t uk,
}
// implement small ukernel on L1
template
<
typename
FloatA
,
typename
FloatB
,
typename
ALayout
,
typename
BLayout
>
template
<
typename
FloatA
,
typename
FloatB
,
typename
ALayout
,
typename
BLayout
,
typename
thread_gemm_instance
>
void
test_cpu_ukernel
(
float
alpha
,
uint32_t
m
,
uint32_t
n
,
uint32_t
k
)
{
int
max_threads
=
omp_get_max_threads
();
...
...
@@ -382,17 +348,18 @@ void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
k
);
// using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
using
thread_gemm_instance
=
thread_gemm_avx2_mxn_4x24_instances
<
ALayout
,
BLayout
>
;
bool
found
=
false
;
//
using thread_gemm_instance = thread_gemm_avx2_mxn_4x24_instances<ALayout, BLayout>;
bool
found
=
false
;
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
thread_gemm_instance
>
,
1
>
{}([
&
](
auto
i
)
{
using
uk_type
=
std
::
tuple_element_t
<
i
,
thread_gemm_instance
>
;
if
(
m
%
uk_type
::
ThreadMr
!=
0
||
n
%
uk_type
::
ThreadNr
!=
0
)
return
;
if
((
m
!=
uk_type
::
ThreadMr
&&
std
::
is_same
<
typename
uk_type
::
MatrixALayout
,
Col
>::
value
)
||
(
n
!=
uk_type
::
ThreadNr
&&
std
::
is_same
<
typename
uk_type
::
MatrixBLayout
,
Row
>::
value
))
// only k is the fast changing dim of A/B can we do muldiplt m, n
return
;
// if((m != uk_type::ThreadMr && std::is_same<typename uk_type::MatrixALayout, Col>::value)
// ||
// (n != uk_type::ThreadNr && std::is_same<typename uk_type::MatrixBLayout, Row>::value))
// // only k is the fast changing dim of A/B can we do muldiplt m, n
// return;
if
(
found
)
return
;
...
...
@@ -435,8 +402,21 @@ int main(int argc, char** argv)
omp_set_num_threads
(
1
);
printf
(
"max threads:%d
\n
"
,
omp_get_max_threads
());
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Row
>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Col
>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Row
>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Col
>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Row
,
thread_gemm_avx2_mxn_4x24_instances
<
Row
,
Row
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Col
,
thread_gemm_avx2_mxn_4x24_instances
<
Row
,
Col
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Row
,
thread_gemm_avx2_mxn_4x24_instances
<
Col
,
Row
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Col
,
thread_gemm_avx2_mxn_4x24_instances
<
Col
,
Col
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Row
,
thread_gemm_avx2_mxn_6x16_instances
<
Row
,
Row
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Row
,
Col
,
thread_gemm_avx2_mxn_6x16_instances
<
Row
,
Col
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Row
,
thread_gemm_avx2_mxn_6x16_instances
<
Col
,
Row
>>
(
alpha
,
m
,
n
,
k
);
test_cpu_ukernel
<
AType
,
BType
,
Col
,
Col
,
thread_gemm_avx2_mxn_6x16_instances
<
Col
,
Col
>>
(
alpha
,
m
,
n
,
k
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment