Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
f9c478e2
Commit
f9c478e2
authored
May 30, 2022
by
ltqin
Browse files
Merge branch 'develop' into bmatrix_skip_lds
parents
7d85d04a
91d8b7d6
Changes
347
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
154 additions
and
829 deletions
+154
-829
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_f64_f64_f32.cpp
...ice_reduce_instance_blockwise_second_call_f64_f64_f32.cpp
+0
-28
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_f64_f64_f64.cpp
...ice_reduce_instance_blockwise_second_call_f64_f64_f64.cpp
+0
-52
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_i32_i32_i8.cpp
...vice_reduce_instance_blockwise_second_call_i32_i32_i8.cpp
+0
-24
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_i8_i8_i8.cpp
...device_reduce_instance_blockwise_second_call_i8_i8_i8.cpp
+0
-40
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp
...ice_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp
+24
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp
...reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp
+0
-53
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f16_f16_f16.cpp
...reduce_instance_multiblock_partial_reduce_f16_f16_f16.cpp
+0
-40
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f16_f32_f16.cpp
...reduce_instance_multiblock_partial_reduce_f16_f32_f16.cpp
+0
-28
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f32_f32_f32.cpp
...reduce_instance_multiblock_partial_reduce_f32_f32_f32.cpp
+0
-45
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f64_f64_f64.cpp
...reduce_instance_multiblock_partial_reduce_f64_f64_f64.cpp
+0
-55
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i32_i8.cpp
...e_reduce_instance_multiblock_partial_reduce_i8_i32_i8.cpp
+0
-24
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i8_i8.cpp
...ce_reduce_instance_multiblock_partial_reduce_i8_i8_i8.cpp
+0
-40
library/src/utility/CMakeLists.txt
library/src/utility/CMakeLists.txt
+8
-8
library/src/utility/conv_util.cpp
library/src/utility/conv_util.cpp
+62
-59
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+2
-1
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+4
-3
profiler/include/profile_batched_gemm_reduce_impl.hpp
profiler/include/profile_batched_gemm_reduce_impl.hpp
+43
-42
profiler/include/profile_conv_bwd_data_impl.hpp
profiler/include/profile_conv_bwd_data_impl.hpp
+0
-283
profiler/include/profile_conv_bwd_weight_impl.hpp
profiler/include/profile_conv_bwd_weight_impl.hpp
+8
-2
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
+3
-2
No files found.
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_f64_f64_f32.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
0
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
0
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
0
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
5
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
5
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
5
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
7
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
7
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
float
,
7
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_f64_f64_f64.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_i32_i32_i8.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int32_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_second_call_i8_i8_i8.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_
partial_reduce_f32
_f64_f
32
.cpp
→
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_
atomic_add_f64
_f64_f
64
.cpp
View file @
f9c478e2
#include "device_reduce_instance_multiblock_
partial_reduce
.hpp"
#include "device_reduce_instance_multiblock_
atomic_add
.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -7,10 +7,14 @@ namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
double
,
float
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
double
,
float
,
7
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
double
,
float
,
7
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
double
,
float
,
7
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
...
...
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f16_f16_f16.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f16_f32_f16.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f32_f32_f32.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
4
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
7
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
7
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
float
,
float
,
float
,
7
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_f64_f64_f64.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
4
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
7
,
0
,
0
,
2
,
1
);
// Will be moved to use MultiBlockAtomicAdd
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
double
,
double
,
double
,
5
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i32_i8.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i8_i8.cpp
deleted
100644 → 0
View file @
7d85d04a
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/utility/CMakeLists.txt
View file @
f9c478e2
...
...
@@ -8,14 +8,14 @@ include_directories(BEFORE
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/utility
)
set
(
CONV_
FWD_
UTIL_SOURCE
conv_
fwd_
util.cpp
set
(
CONV_UTIL_SOURCE
conv_util.cpp
)
add_library
(
conv_
fwd_
util SHARED
${
CONV_
FWD_
UTIL_SOURCE
}
)
target_link_libraries
(
conv_
fwd_
util PRIVATE host_tensor
)
target_compile_features
(
conv_
fwd_
util PUBLIC
)
set_target_properties
(
conv_
fwd_
util PROPERTIES POSITION_INDEPENDENT_CODE ON
)
target_include_directories
(
conv_
fwd_
util SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
add_library
(
conv_util SHARED
${
CONV_UTIL_SOURCE
}
)
target_link_libraries
(
conv_util PRIVATE host_tensor
)
target_compile_features
(
conv_util PUBLIC
)
set_target_properties
(
conv_util PROPERTIES POSITION_INDEPENDENT_CODE ON
)
target_include_directories
(
conv_util SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
clang_tidy_check
(
conv_
fwd_
util
)
clang_tidy_check
(
conv_util
)
library/src/utility/conv_
fwd_
util.cpp
→
library/src/utility/conv_util.cpp
View file @
f9c478e2
#include "conv_
fwd_
util.hpp"
#include "conv_util.hpp"
namespace
ck
{
namespace
utils
{
...
...
@@ -37,16 +37,16 @@ std::size_t get_flops(ck::index_t N,
}
ConvParams
::
ConvParams
()
:
num_dim_spatial
(
2
),
N
(
128
),
K
(
256
),
C
(
192
),
filter_spatial_lengths
(
2
,
3
),
input_spatial_lengths
(
2
,
71
),
conv_filter_strides
(
2
,
2
),
conv_filter_dilations
(
2
,
1
),
input_left_pads
(
2
,
1
),
input_right_pads
(
2
,
1
)
:
num_dim_spatial
_
(
2
),
N
_
(
128
),
K
_
(
256
),
C
_
(
192
),
filter_spatial_lengths
_
(
2
,
3
),
input_spatial_lengths
_
(
2
,
71
),
conv_filter_strides
_
(
2
,
2
),
conv_filter_dilations
_
(
2
,
1
),
input_left_pads
_
(
2
,
1
),
input_right_pads
_
(
2
,
1
)
{
}
...
...
@@ -60,22 +60,23 @@ ConvParams::ConvParams(ck::index_t n_dim,
const
std
::
vector
<
ck
::
index_t
>&
dilations
,
const
std
::
vector
<
ck
::
index_t
>&
left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
right_pads
)
:
num_dim_spatial
(
n_dim
),
N
(
n_batch
),
K
(
n_out_channels
),
C
(
n_in_channels
),
filter_spatial_lengths
(
filters_len
),
input_spatial_lengths
(
input_len
),
conv_filter_strides
(
strides
),
conv_filter_dilations
(
dilations
),
input_left_pads
(
left_pads
),
input_right_pads
(
right_pads
)
:
num_dim_spatial
_
(
n_dim
),
N
_
(
n_batch
),
K
_
(
n_out_channels
),
C
_
(
n_in_channels
),
filter_spatial_lengths
_
(
filters_len
),
input_spatial_lengths
_
(
input_len
),
conv_filter_strides
_
(
strides
),
conv_filter_dilations
_
(
dilations
),
input_left_pads
_
(
left_pads
),
input_right_pads
_
(
right_pads
)
{
if
(
filter_spatial_lengths
.
size
()
!=
num_dim_spatial
||
input_spatial_lengths
.
size
()
!=
num_dim_spatial
||
conv_filter_strides
.
size
()
!=
num_dim_spatial
||
conv_filter_dilations
.
size
()
!=
num_dim_spatial
||
input_left_pads
.
size
()
!=
num_dim_spatial
||
input_right_pads
.
size
()
!=
num_dim_spatial
)
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
filter_spatial_lengths_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_spatial_lengths_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
conv_filter_strides_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
conv_filter_dilations_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_left_pads_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_right_pads_
.
size
())
!=
num_dim_spatial_
)
{
throw
(
std
::
runtime_error
(
"ConvParams::GetOutputSpatialLengths: "
...
...
@@ -85,26 +86,28 @@ ConvParams::ConvParams(ck::index_t n_dim,
std
::
vector
<
ck
::
index_t
>
ConvParams
::
GetOutputSpatialLengths
()
const
{
if
(
filter_spatial_lengths
.
size
()
!=
num_dim_spatial
||
input_spatial_lengths
.
size
()
!=
num_dim_spatial
||
conv_filter_strides
.
size
()
!=
num_dim_spatial
||
conv_filter_dilations
.
size
()
!=
num_dim_spatial
||
input_left_pads
.
size
()
!=
num_dim_spatial
||
input_right_pads
.
size
()
!=
num_dim_spatial
)
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
filter_spatial_lengths_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_spatial_lengths_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
conv_filter_strides_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
conv_filter_dilations_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_left_pads_
.
size
())
!=
num_dim_spatial_
||
ck
::
type_convert
<
ck
::
index_t
>
(
input_right_pads_
.
size
())
!=
num_dim_spatial_
)
{
throw
(
std
::
runtime_error
(
"ConvParams::GetOutputSpatialLengths: "
"parameter size is different from number of declared dimensions!"
));
}
std
::
vector
<
ck
::
index_t
>
out_spatial_len
(
num_dim_spatial
,
0
);
for
(
ck
::
index_t
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
std
::
vector
<
ck
::
index_t
>
out_spatial_len
(
num_dim_spatial
_
,
0
);
for
(
ck
::
index_t
i
=
0
;
i
<
num_dim_spatial
_
;
++
i
)
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const
ck
::
index_t
idx_eff
=
(
filter_spatial_lengths
[
i
]
-
1
)
*
conv_filter_dilations
[
i
]
+
1
;
const
ck
::
index_t
idx_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_filter_dilations_
[
i
]
+
1
;
out_spatial_len
[
i
]
=
(
input_spatial_lengths
[
i
]
+
input_left_pads
[
i
]
+
input_right_pads
[
i
]
-
idx_eff
)
/
conv_filter_strides
[
i
]
+
(
input_spatial_lengths
_
[
i
]
+
input_left_pads
_
[
i
]
+
input_right_pads
_
[
i
]
-
idx_eff
)
/
conv_filter_strides
_
[
i
]
+
1
;
}
return
out_spatial_len
;
...
...
@@ -114,40 +117,40 @@ ConvParams parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[
{
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
num_dim_spatial
=
num_dim_spatial
;
params
.
N
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
num_dim_spatial
_
=
num_dim_spatial
;
params
.
N
_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K
_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C
_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths
.
resize
(
num_dim_spatial
);
params
.
filter_spatial_lengths
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths
.
resize
(
num_dim_spatial
);
params
.
input_spatial_lengths
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
input_spatial_lengths
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides
.
resize
(
num_dim_spatial
);
params
.
conv_filter_strides
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
conv_filter_strides
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations
.
resize
(
num_dim_spatial
);
params
.
conv_filter_dilations
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
conv_filter_dilations
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads
.
resize
(
num_dim_spatial
);
params
.
input_left_pads
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
input_left_pads
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads
.
resize
(
num_dim_spatial
);
params
.
input_right_pads
_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
input_right_pads
_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
...
...
@@ -226,12 +229,12 @@ HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::siz
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
ck
::
utils
::
conv
::
ConvParams
&
p
)
{
os
<<
"ConvParams {"
<<
"
\n
num_dim_spatial: "
<<
p
.
num_dim_spatial
<<
"
\n
N: "
<<
p
.
N
<<
"
\n
K: "
<<
p
.
K
<<
"
\n
C: "
<<
p
.
C
<<
"
\n
filter_spatial_lengths: "
<<
p
.
filter_spatial_lengths
<<
"
\n
input_spatial_lengths: "
<<
p
.
input_spatial_lengths
<<
"
\n
conv_filter_strides: "
<<
p
.
conv_filter_strides
<<
"
\n
conv_filter_dilations: "
<<
p
.
conv_filter_dilations
<<
"
\n
input_left_pads: "
<<
p
.
input_left_pads
<<
"
\n
input_right_pads: "
<<
p
.
input_right_pads
;
<<
"
\n
num_dim_spatial: "
<<
p
.
num_dim_spatial
_
<<
"
\n
N: "
<<
p
.
N
_
<<
"
\n
K: "
<<
p
.
K
_
<<
"
\n
C: "
<<
p
.
C
_
<<
"
\n
filter_spatial_lengths: "
<<
p
.
filter_spatial_lengths
_
<<
"
\n
input_spatial_lengths: "
<<
p
.
input_spatial_lengths
_
<<
"
\n
conv_filter_strides: "
<<
p
.
conv_filter_strides
_
<<
"
\n
conv_filter_dilations: "
<<
p
.
conv_filter_dilations
_
<<
"
\n
input_left_pads: "
<<
p
.
input_left_pads
_
<<
"
\n
input_right_pads: "
<<
p
.
input_right_pads
_
;
return
os
;
}
profiler/CMakeLists.txt
View file @
f9c478e2
include_directories
(
BEFORE
${
PROJECT_SOURCE_DIR
}
/include/ck
${
PROJECT_SOURCE_DIR
}
/include/ck/utility
${
PROJECT_SOURCE_DIR
}
/include/ck/host_utility
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor_description
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor
${
PROJECT_SOURCE_DIR
}
/include/ck/problem_transform
...
...
@@ -43,7 +44,7 @@ set(PROFILER_SOURCE
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
target_link_libraries
(
ckProfiler PRIVATE host_tensor
)
target_link_libraries
(
ckProfiler PRIVATE conv_
fwd_
util
)
target_link_libraries
(
ckProfiler PRIVATE conv_util
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bias2d_instance
)
...
...
profiler/include/profile_batched_gemm_impl.hpp
View file @
f9c478e2
...
...
@@ -63,7 +63,7 @@ template <typename ADataType,
bool
profile_batched_gemm_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
...
...
@@ -356,11 +356,12 @@ bool profile_batched_gemm_impl(int do_verification,
{
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
)
*
BatchCount
;
...
...
profiler/include/profile_batched_gemm_reduce_impl.hpp
View file @
f9c478e2
...
...
@@ -17,11 +17,21 @@ namespace tensor_operation {
namespace
device
{
namespace
device_gemm_instance
{
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
DPtrsGlobal
=
ck
::
Tuple
<
F32
*
,
F32
*>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Identity
,
Identity
>
;
using
DeviceGemmReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmReducePtr
<
DPtrsGlobal
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>>
;
DInElementOps
,
DOutElementOps
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmReduceNoOpPtr
>&
);
...
...
@@ -53,7 +63,7 @@ template <typename ADataType,
bool
profile_batched_gemm_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
...
...
@@ -119,19 +129,25 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
d0_reduce_op
=
D0ReduceOp
{};
const
auto
d1_reduce_op
=
D1ReduceOp
{};
const
auto
d1_element_op
=
D1ElementOp
{};
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
float
,
float
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnaryIdenticElementOp
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
dxs_in_element_op
=
DxsInElementOps
{};
const
auto
dxs_out_element_op
=
DxsOutElementOps
{};
const
auto
d0_reduce_op
=
D0ReduceOp
{};
const
auto
d1_reduce_op
=
D1ReduceOp
{};
if
(
do_verification
)
{
...
...
@@ -163,7 +179,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
float
d0_val
=
ck
::
type_convert
<
float
>
(
c_g_m_n_host_result
(
batch
,
m
,
n
));
float
d1_val
;
d1_e
lement
_op
(
d1_val
,
d0_val
);
UnarySquareE
lement
Op
{}
(
d1_val
,
d0_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
...
...
@@ -180,6 +196,9 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_g_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_g_m_device_result
.
mDesc
.
GetElementSpace
());
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
...
...
@@ -241,8 +260,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
...
...
@@ -252,37 +270,20 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
,
dxs_in_element_op
,
dxs_out_element_op
,
BatchCount
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// warm up
invoker_ptr
->
Run
(
argument_ptr
.
get
());
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker_ptr
->
Run
(
argument_ptr
.
get
());
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
float
ave_time
=
total_time
/
nrepeat
;
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
...
...
profiler/include/profile_conv_bwd_data_impl.hpp
deleted
100644 → 0
View file @
7d85d04a
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
int8_t
;
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_bwd_data_instance
{
using
DeviceConvBwdDataNoOpPtr
=
DeviceConvBwdDataPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
DeviceConvBwdDataNoOpPtr
>&
);
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvBwdDataNoOpPtr
>&
);
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
DeviceConvBwdDataNoOpPtr
>&
);
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
DeviceConvBwdDataNoOpPtr
>&
);
}
// namespace device_conv2d_bwd_data_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
int
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
void
profile_conv_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi_host_result
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
InDataType
>
in_n_c_hi_wi_device_result
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
do_verification
)
{
using
ReferenceConvBwdDataInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
auto
ref_conv
=
ReferenceConvBwdDataInstance
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi_host_result
,
wei_k_c_y_x
,
out_n_k_ho_wo
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceConvBwdDataNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdDataPtr
<
PassThrough
,
PassThrough
,
PassThrough
>
;
// add device Conv instances
std
::
vector
<
DeviceConvBwdDataNoOpPtr
>
conv_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
float
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_bwd_data_instance
::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances
(
conv_ptrs
);
}
else
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
half_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_bwd_data_instance
::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
}
else
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
bhalf_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
bhalf_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
bhalf_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_bwd_data_instance
::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
conv_ptrs
);
}
else
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
int8_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
int8_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
int8_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_bwd_data_instance
::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
conv_ptrs
);
}
if
(
conv_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device Conv instances
for
(
auto
&
conv_ptr
:
conv_ptrs
)
{
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
auto
invoker_ptr
=
conv_ptr
->
MakeInvokerPointer
();
if
(
conv_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
conv_name
=
conv_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_conv_name
=
conv_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
in_n_c_hi_wi_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
in_n_c_hi_wi_device_result
.
mData
,
in_n_c_hi_wi_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
in_n_c_hi_wi_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
in_n_c_hi_wi_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_conv_bwd_weight_impl.hpp
View file @
f9c478e2
#pragma once
#include "stream_config.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
...
...
@@ -43,7 +45,7 @@ template <int NDimSpatial,
bool
profile_conv_bwd_weight_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
...
...
@@ -182,6 +184,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
// profile device Conv instances
bool
pass
=
true
;
for
(
auto
&
conv_ptr
:
conv_ptrs
)
{
// using atomic, so need to reset input
...
...
@@ -189,6 +192,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{
wei_device_buf
.
SetZero
();
}
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
...
...
@@ -214,7 +218,8 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{
std
::
string
conv_name
=
conv_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
...
...
@@ -242,6 +247,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
float
max_error
=
check_error
(
wei_k_c_y_x_host_result
,
wei_k_c_y_x_device_result
);
if
(
max_error
>
8
)
{
pass
=
false
;
...
...
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
View file @
f9c478e2
...
...
@@ -42,7 +42,7 @@ template <int NDimSpatial,
void
profile_conv_fwd_bias_relu_add_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
...
...
@@ -219,7 +219,8 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
{
std
::
string
conv_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
...
...
Prev
1
…
10
11
12
13
14
15
16
17
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment