Commit f752739c authored by danyao12's avatar danyao12
Browse files

Merge branch 'mha-train-develop' into mha-train-ldsbypass

parents b3a96764 26fa4782
......@@ -52,8 +52,8 @@ using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......@@ -121,6 +121,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -135,6 +136,7 @@ using DeviceGemmInstance =
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
......@@ -146,6 +148,7 @@ using DeviceGemmInstance =
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
......@@ -192,6 +195,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -206,6 +210,7 @@ using DeviceGemmInstance =
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
......@@ -217,6 +222,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
......@@ -253,7 +259,7 @@ using DeviceGemmInstance =
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
......@@ -262,7 +268,8 @@ using DeviceGemmInstance =
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -277,7 +284,8 @@ using DeviceGemmInstance =
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
......@@ -288,6 +296,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
......
......@@ -52,8 +52,8 @@ using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......@@ -121,6 +121,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -135,6 +136,7 @@ using DeviceGemmInstance =
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
......@@ -146,6 +148,7 @@ using DeviceGemmInstance =
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
......@@ -192,6 +195,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -206,6 +210,7 @@ using DeviceGemmInstance =
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
......@@ -217,6 +222,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
......@@ -253,7 +259,7 @@ using DeviceGemmInstance =
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
......@@ -262,7 +268,8 @@ using DeviceGemmInstance =
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -277,7 +284,8 @@ using DeviceGemmInstance =
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
......@@ -288,6 +296,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
......
......@@ -177,8 +177,8 @@ int run(int argc, char* argv[])
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
nullptr, // std::array<void*, 1> p_acc0_biases;
nullptr, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
......
add_example_executable(example_batched_multihead_attention_bias_forward_v2 batched_multihead_attention_bias_forward_v2.cpp)
add_example_executable(example_grouped_multihead_attention_bias_forward_v2 grouped_multihead_attention_bias_forward_v2.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#define DIM 128 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using INT32 = int32_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DataType = F16;
using GemmDataType = F16;
using ADataType = DataType;
using B0DataType = DataType;
using B1DataType = DataType;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = DataType;
using DDataType = F16;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = DDataType;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
32, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
2,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
// Ref Gemm0: DataType in, AccDataType out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: AccDataType in, DataType out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: DataType in, DataType out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_batched_multihead_attention_bias_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#define DIM 64 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using INT32 = int32_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DataType = F16;
using GemmDataType = F16;
using ADataType = DataType;
using B0DataType = DataType;
using B1DataType = DataType;
using AccDataType = F32;
using DDataType = F16;
using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = DDataType;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
32, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
2,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
// Ref Gemm0: DataType in, AccDataType out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: AccDataType in, DataType out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: DataType in, DataType out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_grouped_multihead_attention_bias_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1000; // 120
ck::index_t N = 1000; // 1000
ck::index_t K = DIM;
ck::index_t O = DIM;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
bool input_permute = false;
bool output_permute = true;
float p_drop = 0.1;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
p_drop = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
float p_dropout = 1 - p_drop;
ZDataType p_dropout_in_16bits = ZDataType(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
float alpha = 1.f / std::sqrt(K);
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // D layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // D layout [G0, G1, M, N]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
std::vector<ck::index_t> lse_gs_ms_lengths{G0, G1, M};
std::vector<ck::index_t> lse_gs_ms_strides =
std::vector<ck::index_t>{G1 * M, M, 1}; // LSE layout [G0, G1, M]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<LSEDataType> lse_gs_ms_host_result(lse_gs_ms_lengths, lse_gs_ms_strides);
Tensor<LSEDataType> lse_gs_ms_device_result(lse_gs_ms_lengths, lse_gs_ms_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::cout << "z_gs_ms_ns: " << z_gs_ms_ns.mDesc << std::endl;
std::cout << "lse_gs_ms_os: " << lse_gs_ms_host_result.mDesc << std::endl;
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<ZDataType>{0});
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<DDataType>{-1, 1});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<DDataType>{1});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<DDataType>{1});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem z_device_buf(sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem lse_device_buf(sizeof(LSEDataType) *
lse_gs_ms_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
// TODO ANT: replace array with vector?
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d_device_buf.GetDeviceBuffer()), //
nullptr,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
d_gs_ms_ns_lengths, // acc0_biases_gs_ms_ns_lengths
d_gs_ms_ns_strides, // acc0_biases_gs_ms_ns_strides
{}, // std::vector<ck::index_t>
{}, // std::vector<ck::index_t>
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number of
// elements on a thread
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(DDataType) * M * N * std::is_void<DDataType>::value?1:0) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
// run for storing z tensor
argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d_device_buf.GetDeviceBuffer()),
nullptr,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
d_gs_ms_ns_lengths,
d_gs_ms_ns_strides,
{},
{},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number
// of elements on a thread
c_device_buf.SetZero();
lse_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
z_device_buf.FromDevice(z_gs_ms_ns.mData.data());
lse_device_buf.FromDevice(lse_gs_ms_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<ADataType> a1_g_m_n_drop({G0 * G1, M, N});
Tensor<LSEDataType> lse_g_m_host_result(
{BatchCount, M}); // scratch object after max + ln(sum)
Tensor<DDataType> d_g_m_n({G0 * G1, M, N});
Tensor<ZDataType> z_g_m_n({G0 * G1, M, N});
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
d_gs_ms_ns.ForEach([&](auto& self, auto idx) {
d_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
z_gs_ms_ns.ForEach([&](auto& self, auto idx) {
z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// bias
acc0_g_m_n.ForEach([&](auto& self, auto idx) { self(idx) += d_g_m_n(idx); });
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(M, N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2}, &lse_g_m_host_result);
ref_softmax_invoker.Run(ref_softmax_argument);
// dropout after softmax
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, a1_g_m_n, a1_g_m_n_drop, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n_drop,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
lse_gs_ms_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = lse_g_m_host_result(g, idx[2]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<DataType, ck::bhalf_t> || std::is_same_v<GemmDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results c!",
rtol,
atol) &&
ck::utils::check_err(lse_gs_ms_device_result.mData,
lse_gs_ms_host_result.mData,
"Error: Incorrect results lse!",
rtol,
atol)
? 0
: 1;
}
return 0;
}
......@@ -138,12 +138,12 @@ struct BlockwiseDropout
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{} * MRaw);
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{} * MRaw);
}
block_sync_lds();
......@@ -179,12 +179,12 @@ struct BlockwiseDropout
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{} * MRaw);
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{} * MRaw);
}
block_sync_lds();
......@@ -218,21 +218,19 @@ struct BlockwiseDropout
}
// get raw z matrix with random number for shuffle
template <typename ZThreadBuffer,
typename Step,
typename Offset> // N3*N4=8
template <typename ZThreadBuffer, typename Step, typename Offset>
__host__ __device__ void GenerateZMatrixAttnFwd(ck::philox& ph,
index_t element_global_1d_id,
ZThreadBuffer& z_thread_buf)
{
constexpr int tmp_size = MRepeat * KRepeat / Step{}.value;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{});
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{});
}
static_for<0, tmp_size, 1>{}([&](auto i) { z_thread_buf(i) = tmp[i.value]; });
......
......@@ -87,9 +87,6 @@ template <index_t NumDimG,
MaskingSpecialization MaskingSpec>
struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
{
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b0,
......@@ -97,8 +94,8 @@ struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const void* p_acc0_biases,
const void* p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -110,11 +107,11 @@ struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
const std::vector<index_t>& z_gs_ms_ns_lengths, // z_gs_ms_os_lengths
const std::vector<index_t>& z_gs_ms_ns_strides, // z_gs_ms_os_strides
const std::vector<index_t>& lse_gs_ms_lengths, // lse_gs_ms_lengths
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<index_t>, NumAcc1Bias>
const std::vector<index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<index_t>& acc0_biases_gs_ms_ns_strides,
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<index_t>, NumAcc1Bias>
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
......
......@@ -111,11 +111,11 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std::vector<index_t> lse_gs_ms_lengths;
std::vector<index_t> lse_gs_ms_strides;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_lengths;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_strides;
std::vector<index_t> acc0_biases_gs_ms_ns_lengths;
std::vector<index_t> acc0_biases_gs_ms_ns_strides;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_lengths;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_strides;
std::vector<index_t> acc1_biases_gs_ms_os_lengths;
std::vector<index_t> acc1_biases_gs_ms_os_strides;
};
virtual std::unique_ptr<BaseArgument>
......@@ -125,9 +125,9 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
std::vector<const void*> p_acc0_biases_vec,
std::vector<const void*> p_acc1_biases_vec,
std::vector<ProblemDesc>& problem_desc_vec,
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
......
......@@ -21,8 +21,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -20,8 +20,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -10,7 +10,6 @@
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
......@@ -22,8 +21,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -21,8 +21,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -10,7 +10,6 @@
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
......@@ -21,8 +20,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -20,8 +20,6 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment