Commit f1b53d78 authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into navi3x_mD_batchedGEMM_GroupConvFwd
parents 0c9cdbce 7494c1c6
......@@ -172,6 +172,42 @@ struct AddAdd
}
};
// C = A * B
// E = (C + D0) x D1
struct AddMultiply
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ void operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ void operator()<half_t, half_t, half_t, half_t>(half_t& e,
const half_t& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = (c + d0) * d1;
e = y;
}
template <>
__host__ __device__ void operator()<half_t, float, half_t, half_t>(half_t& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const half_t y = (type_convert<half_t>(c) + d0) * d1;
e = y;
}
template <>
__host__ __device__ void operator()<float, float, half_t, half_t>(float& e,
const float& c,
const half_t& d0,
const half_t& d1) const
{
const float y = (c + d0) * d1;
e = y;
}
};
// C = A * B
// E = FastGelu(C + D0 + D1)
struct AddAddFastGelu
......@@ -278,6 +314,40 @@ struct Normalize
double epsilon_;
};
// used by BatchNorm inference
// y = gamma * (x-mean) / sqrt(epsilon+variance) + beta
// The data type of mean and variance is used as AccDataType
struct NormalizeInInfer
{
NormalizeInInfer(double epsilon = 1e-4) : epsilon_(epsilon) {}
template <typename T1, typename T2, typename T3, typename T4>
__host__ __device__ constexpr void operator()(T1& y,
const T1& x,
const T2& mean,
const T2& variance,
const T3& gamma,
const T4& beta) const
{
static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T2 tmp_x, tmp_y;
tmp_x = type_convert<T2>(x);
tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) *
type_convert<T2>(gamma) +
type_convert<T2>(beta);
y = type_convert<T1>(tmp_y);
};
double epsilon_;
};
template <typename Y, typename X>
struct UnaryTypeConvert;
......
......@@ -154,6 +154,50 @@ struct BlockToCTileMap_M00_N0_M01Adapt
index_t idx_M01 = idx_M0 % M01_;
index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
/**
* idxN0
*
* |< mtx N >|
*
* NPerBlock NPerBlock NPerBlock NPerBlock
* N_0 N_1 N_2 N_3
* - |-----------|-----------|-----------|-----|-----|-
* ^ | - - 0 |/----> 2 | | | |
* | | | / | | | | | M_0 MPerBlock
* | M | /| | | | | |
* |-0---|---/-|-----|-----|-----------|-----|-----|-
* | 1 | / | | | blockid | | |
* idxM0 | | | / | V | 5 | | | M_1 MPerBlock
* | - V 1 | - 3 | | | |
* |-----------|-----------|-----------|-----|-----|-
* mtx M | | | | | |
* | | | | | | M_2 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* | | | | | |
* | | | | | | M_3 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* V | | | | | |
* - |-----------|-----------|-----------|-----|-----|- M_4 MPerBlock
* | | | | | |
* |-----------|-----------|-----------|-----|-----|-
* Example:
* assume:
* M0 = 5
* N0 = 4
* block_1d_id = 5
* M01 = 2
*
* idx_N0 = 1
* idx_M0 = 1
* M01_adapt = 2
* idx_M00 = 0
* idx_M01 = 1
* idx_N0_M01_local = 5
* output {1, 2}
*/
return make_tuple(idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
idx_N0_M01_local / M01_adapt);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
namespace ck {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// output : F[M, N0], where N0 is number of blocks along N dimension
// output : G[M, N0], where N0 is number of blocks along N dimension
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// F, G = welford(E)
// Assume:
// D0, D1, ... and E have the same layout
// Calculate mean & variance along N dimension for E
template <typename ABDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EMeanVarDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
typename AGridDesc_M_K,
typename BGridDesc_N_K,
typename DsGridDesc_M_N,
typename EGridDesc_M_N,
typename MeanVarGridDesc_M_NBlock,
typename CountGridDesc_M_NBlock,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename PostShuffleThreadClusterSize_M_N,
index_t PostShuffleScalarPerVector,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleDWelfordFirstHalf_xdl_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ABDataType),
c_block_size * sizeof(CShuffleDataType));
}
// A desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultAGridDescriptor_AK0_M_AK1(const AGridDesc_M_K& a_grid_desc_m_k)
{
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// B desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultBGridDescriptor_BK0_N_BK1(const BGridDesc_N_K& b_grid_desc_n_k)
{
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// E desc for destination in blockwise copy
template <typename EGridDescriptor_M_N>
__host__ __device__ static constexpr auto MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const EGridDescriptor_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDescriptor_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const DsGridDescriptor_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
template <typename GridDescriptor_M_N>
__host__ __device__ static constexpr auto
MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock(const GridDescriptor_M_N& grid_desc_m_n)
{
const auto M = grid_desc_m_n.GetLength(I0);
const auto NBlock = grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto grid_desc_mblock_mperblock_nblock = transform_tensor_descriptor(
grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_pass_through_transform(NBlock)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}));
return grid_desc_mblock_mperblock_nblock;
}
// return block_id to E matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2ETileMap>
__host__ __device__ static constexpr bool CheckValidity(const AGridDesc_M_K& a_grid_desc_m_k,
const BGridDesc_N_K& b_grid_desc_n_k,
const DsGridDesc_M_N& ds_grid_desc_m_n,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2ETileMap& block_2_etile_map)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
// check consistency of desc
if(!(M == e_grid_desc_m_n.GetLength(I0) && N == e_grid_desc_m_n.GetLength(I1)))
{
return false;
}
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
valid = valid && (M == ds_grid_desc_m_n[i].GetLength(I0) &&
N == ds_grid_desc_m_n[i].GetLength(I1));
});
if(!valid)
{
return false;
}
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
// check block-to-E-tile
if(!block_2_etile_map.CheckValidity(e_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_m_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
b_grid_desc_n_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EMeanVarDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
using DefaultAGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using DefaultBGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(EGridDesc_M_N{}))>;
using MeanVarGridDescriptor_MBlock_MPerBlock_NBlock = remove_cvref_t<decltype(
MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock(MeanVarGridDesc_M_NBlock{}))>;
using CountGridDescriptor_MBlock_MPerBlock_NBlock = remove_cvref_t<decltype(
MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock(CountGridDesc_M_NBlock{}))>;
using DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(DsGridDesc_M_N{}))>;
using DefaultBlock2ETileMap =
remove_cvref_t<decltype(MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
using DsGridPointer = decltype(MakeDsGridPointer());
template <bool HasMainKBlockLoop,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename Block2ETileMap>
__device__ static void
Run(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EMeanVarDataType* __restrict__ p_e_grid,
EMeanVarDataType* __restrict__ p_welford_mean_grid,
EMeanVarDataType* __restrict__ p_welford_var_grid,
int32_t* __restrict__ p_welford_count,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const MeanVarGridDescriptor_MBlock_MPerBlock_NBlock&
mean_var_grid_desc_mblock_mperblock_nblock,
const CountGridDescriptor_MBlock_MPerBlock_NBlock& count_grid_desc_mblock_mperblock_nblock,
const Block2ETileMap& block_2_etile_map,
index_t NRaw)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
auto mean_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_mean_grid, mean_var_grid_desc_mblock_mperblock_nblock.GetElementSpaceSize());
auto var_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_var_grid, mean_var_grid_desc_mblock_mperblock_nblock.GetElementSpaceSize());
auto welford_count_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_count, count_grid_desc_mblock_mperblock_nblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_etile_map.ValidCTileIndex(
block_work_idx,
make_tuple(e_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
e_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ABDataType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
LoopSched>();
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1, 0, 0);
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// shuffle C, Welford and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>,
false>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_der_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>,
false>{};
// LDS c_shuffle_block_desc_mperblock_nperblock
constexpr auto c_shuffle_block_desc_mperblock_nperblock = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_pass_through_transform(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetLength(I1)),
make_freeze_transform(I0),
make_pass_through_transform(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetLength(I3))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<>{}, Sequence<1>{}));
static_assert(PostShuffleThreadClusterSize_M_N::At(I0) *
PostShuffleThreadClusterSize_M_N::At(I1) ==
BlockSize,
"wrong!");
static_assert((CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl) %
PostShuffleThreadClusterSize_M_N::At(I0) ==
0 &&
(CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl) %
PostShuffleThreadClusterSize_M_N::At(I1) ==
0,
"wrong!");
constexpr index_t PostShuffleThreadSliceSize_M =
(CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl) /
PostShuffleThreadClusterSize_M_N::At(I0);
constexpr index_t PostShuffleThreadSliceSize_N =
(CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl) /
PostShuffleThreadClusterSize_M_N::At(I1);
constexpr auto PostShuffleThreadSliceSize_M_N =
Sequence<PostShuffleThreadSliceSize_M, PostShuffleThreadSliceSize_N>{};
// VGPR post_shuffle_thread_desc_m_n
constexpr auto post_shuffle_thread_desc_m_n = make_naive_tensor_descriptor_packed(
make_tuple(Number<PostShuffleThreadSliceSize_M>{},
Number<PostShuffleThreadSliceSize_N>{}));
auto e_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, AccDataType>(
post_shuffle_thread_desc_m_n.GetElementSpaceSize());
// To apply D0, D1, ... and Welford.
// threadwise copy from LDS to VGPR
constexpr auto post_shuffle_thread_cluster_desc =
make_cluster_descriptor(PostShuffleThreadClusterSize_M_N{}, Sequence<0, 1>{});
const auto post_shuffle_thread_cluster_idx =
post_shuffle_thread_cluster_desc.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
const auto post_shuffle_thread_data_idx_begin =
post_shuffle_thread_cluster_idx * PostShuffleThreadSliceSize_M_N;
// To apply D0, D1, ... and Welford.
// Copy c shuffle from LDS back to VGPR
auto post_shuffle_thread_copy_lds_to_vgpr =
ThreadwiseTensorSliceTransfer_v2<CShuffleDataType,
AccDataType,
decltype(c_shuffle_block_desc_mperblock_nperblock),
decltype(post_shuffle_thread_desc_m_n),
decltype(PostShuffleThreadSliceSize_M_N),
Sequence<0, 1>,
1,
PostShuffleScalarPerVector,
1,
true>{c_shuffle_block_desc_mperblock_nperblock,
post_shuffle_thread_data_idx_begin};
// D0, D1, ..., Dn
constexpr auto post_shuffle_thread_desc_I1_mperblock_I1_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<PostShuffleThreadSliceSize_M>{},
I1,
Number<PostShuffleThreadSliceSize_N>{}));
// FIXME: Decrease usage of VGPR
// Apply pointwise lambda function from multi-source (Global and LDS) into VGPR
auto ds_thread_buf = generate_tuple(
[&](auto) {
return make_static_buffer<AddressSpaceEnum::Vgpr, CShuffleDataType>(
post_shuffle_thread_desc_I1_mperblock_I1_nperblock.GetElementSpaceSize());
},
Number<NumDTensor>{});
// Copy D0, D1, ..., Dn from global to VGPR
auto ds_thread_copy_global_to_vgpr = generate_tuple(
[&](auto I) {
using DDataType = remove_cvref_t<tuple_element_t<I.value, DsDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
DDataType,
AccDataType,
decltype(ds_grid_desc_mblock_mperblock_nblock_nperblock[I]),
decltype(post_shuffle_thread_desc_I1_mperblock_I1_nperblock),
Sequence<I1,
PostShuffleThreadSliceSize_M,
I1,
PostShuffleThreadSliceSize_N>,
Sequence<0, 1, 2, 3>,
3,
PostShuffleScalarPerVector,
1,
true>(
ds_grid_desc_mblock_mperblock_nblock_nperblock[I],
make_multi_index(
I0,
m_block_data_idx_on_grid + post_shuffle_thread_data_idx_begin[I0],
I0,
n_block_data_idx_on_grid + post_shuffle_thread_data_idx_begin[I1]));
},
Number<NumDTensor>{});
auto e_thread_copy_vgpr_to_global = ThreadwiseTensorSliceTransfer_v1r3<
AccDataType,
EMeanVarDataType,
decltype(post_shuffle_thread_desc_I1_mperblock_I1_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
tensor_operation::element_wise::PassThrough,
Sequence<I1,
PostShuffleThreadSliceSize_M,
I1,
PostShuffleThreadSliceSize_N>, // SliceLengths
Sequence<0, 1, 2, 3>, // DimAccessOrder
3, // DstVectorDim
PostShuffleScalarPerVector,
InMemoryDataOperationEnum::Set,
1,
true>{
e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(I0,
m_block_data_idx_on_grid + post_shuffle_thread_data_idx_begin[I0],
I0,
n_block_data_idx_on_grid + post_shuffle_thread_data_idx_begin[I1]),
tensor_operation::element_wise::PassThrough{}};
// Welford
constexpr auto thread_welford_src_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<PostShuffleThreadSliceSize_M>{},
Number<PostShuffleThreadSliceSize_N>{}));
constexpr auto thread_welford_dst_desc_m = make_naive_tensor_descriptor_packed(
make_tuple(Number<PostShuffleThreadSliceSize_M>{}));
using ThreadwiseWelford = ThreadwiseWelford<AccDataType,
decltype(thread_welford_src_desc_m_k),
decltype(thread_welford_dst_desc_m)>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
PostShuffleThreadClusterSize_M_N,
Sequence<0, 1>,
false>;
constexpr int num_shuffleM =
MPerBlock / (CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl);
constexpr int num_shuffleN =
NPerBlock / (CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl);
using mean_var_vgpr_type =
decltype(make_static_buffer<AddressSpaceEnum::Vgpr, AccDataType>(
thread_welford_dst_desc_m.GetElementSpaceSize()));
using welford_count_vgpr_type =
decltype(make_static_buffer<AddressSpaceEnum::Vgpr, int32_t>(
thread_welford_dst_desc_m.GetElementSpaceSize()));
Array<ThreadwiseWelford, num_shuffleM> threadwise_welfords;
Array<mean_var_vgpr_type, num_shuffleM> mean_thread_bufs;
Array<mean_var_vgpr_type, num_shuffleM> var_thread_bufs;
Array<welford_count_vgpr_type, num_shuffleM> welford_count_thread_bufs;
int max_count = PostShuffleThreadSliceSize_N * num_shuffleN;
const auto nblock = mean_var_grid_desc_mblock_mperblock_nblock.GetLength(I2);
// tail block
if(block_work_idx[I1] % nblock == nblock - 1)
{
constexpr index_t NPerShuffleBlock =
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl;
int NPerBlockTail = NRaw - NPerBlock * (nblock - 1);
int thread_max_len =
PostShuffleThreadSliceSize_N * (post_shuffle_thread_cluster_idx[I1] + 1);
int shuffle_step = 0;
while(thread_max_len <= NPerBlockTail && shuffle_step < num_shuffleN)
{
++shuffle_step;
thread_max_len += NPerShuffleBlock;
}
int delta = 0;
if(thread_max_len - NPerBlockTail > PostShuffleThreadSliceSize_N)
delta = 0;
else if(NPerBlockTail > thread_max_len)
delta = PostShuffleThreadSliceSize_N;
else
delta = PostShuffleThreadSliceSize_N - thread_max_len + NPerBlockTail;
max_count = shuffle_step * PostShuffleThreadSliceSize_N + delta;
}
static_for<0, num_shuffleM, 1>{}([&](auto i) {
threadwise_welfords(i).max_count_ = max_count;
mean_thread_bufs(i) = make_static_buffer<AddressSpaceEnum::Vgpr, AccDataType>(
thread_welford_dst_desc_m.GetElementSpaceSize());
var_thread_bufs(i) = make_static_buffer<AddressSpaceEnum::Vgpr, AccDataType>(
thread_welford_dst_desc_m.GetElementSpaceSize());
welford_count_thread_bufs(i) = make_static_buffer<AddressSpaceEnum::Vgpr, int32_t>(
thread_welford_dst_desc_m.GetElementSpaceSize());
static_for<0, PostShuffleThreadSliceSize_M, 1>{}([&](auto j) {
mean_thread_bufs(i)(j) = type_convert<AccDataType>(0.0f);
var_thread_bufs(i)(j) = type_convert<AccDataType>(0.0f);
welford_count_thread_bufs(i)(j) = 0;
});
});
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_der_global.GetNumOfAccess(), "wrong!");
int shuffleM_index = __builtin_amdgcn_readfirstlane(0);
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to read from LDS
block_sync_lds();
// each thread shuffle data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to write to LDS
block_sync_lds();
// Get shuffle data from LDS to VGPR
post_shuffle_thread_copy_lds_to_vgpr.Run(c_shuffle_block_desc_mperblock_nperblock,
c_shuffle_block_buf,
post_shuffle_thread_desc_m_n,
make_tuple(I0, I0),
e_thread_buf);
// Global read D0, D1, ...
static_for<0, NumDTensor, 1>{}([&](auto Id) {
auto& d_thread_copy_global_to_vgpr = ds_thread_copy_global_to_vgpr(Id);
d_thread_copy_global_to_vgpr.Run(
ds_grid_desc_mblock_mperblock_nblock_nperblock[Id],
ds_grid_buf[Id],
post_shuffle_thread_desc_I1_mperblock_I1_nperblock,
make_tuple(I0, I0, I0, I0),
ds_thread_buf(Id));
if constexpr(access_id < num_access - 1)
{
// move on D0, D1, ...
constexpr auto de_global_step = sfc_der_global.GetForwardStep(access_id);
d_thread_copy_global_to_vgpr.MoveSrcSliceWindow(
ds_grid_desc_mblock_mperblock_nblock_nperblock[Id], de_global_step);
}
});
// cde_element_op(e, c, d0, d1, ...);
static_for<0, post_shuffle_thread_desc_m_n.GetElementSize(), 1>{}([&](auto i) {
const auto c_ds_src_data_refs = concat_tuple_of_reference(
tie(e_thread_buf[i]),
generate_tie(
[&](auto Id) -> const auto& { return ds_thread_buf[Id][i]; },
Number<NumDTensor>{}));
auto e_dst_data_refs = tie(e_thread_buf(i));
unpack2(cde_element_op, e_dst_data_refs, c_ds_src_data_refs);
});
// Global write E
e_thread_copy_vgpr_to_global.Run(post_shuffle_thread_desc_I1_mperblock_I1_nperblock,
make_tuple(I0, I0, I0, I0),
e_thread_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_buf);
if constexpr(access_id < num_access - 1)
{
// move on E
constexpr auto de_global_step = sfc_der_global.GetForwardStep(access_id);
e_thread_copy_vgpr_to_global.MoveDstSliceWindow(
e_grid_desc_mblock_mperblock_nblock_nperblock, de_global_step);
}
// Threadwise welford
auto& threadwise_welford = threadwise_welfords(shuffleM_index);
auto& mean_thread_buf = mean_thread_bufs(shuffleM_index);
auto& var_thread_buf = var_thread_bufs(shuffleM_index);
threadwise_welford.Run(e_thread_buf, mean_thread_buf, var_thread_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto de_global_step = sfc_der_global.GetForwardStep(access_id);
constexpr int shuffleMInc =
de_global_step[I1] /
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetLength(I1);
shuffleM_index = __builtin_amdgcn_readfirstlane(shuffleM_index + shuffleMInc);
}
}); // copy c, d, e + welford
// Blockwise welford and write out
static_for<0, num_shuffleM, 1>{}([&](auto i) {
auto& mean_thread_buf = mean_thread_bufs(i);
auto& var_thread_buf = var_thread_bufs(i);
auto& count_thread_buf = welford_count_thread_bufs(i);
static_for<0, PostShuffleThreadSliceSize_M, 1>{}([&](auto j) {
block_sync_lds();
count_thread_buf(j) = threadwise_welfords(i).cur_count_;
BlockwiseWelford::Run(
mean_thread_buf(j), var_thread_buf(j), count_thread_buf(j));
});
if(post_shuffle_thread_cluster_idx[I1] == 0)
{
constexpr auto thread_welford_desc_I_m_I = make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<PostShuffleThreadSliceSize_M>{}, I1));
constexpr int shuffleMPerBlock =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetLength(I1);
auto mean_var_count_thread_copy_index = make_multi_index(
block_work_idx[I0], // mblock
shuffleMPerBlock * i + post_shuffle_thread_data_idx_begin[I0], // mperblock
block_work_idx[I1]); // nblock
auto mean_var_thread_copy_vgpr_to_global = ThreadwiseTensorSliceTransfer_v1r3<
AccDataType,
EMeanVarDataType,
decltype(thread_welford_desc_I_m_I),
decltype(mean_var_grid_desc_mblock_mperblock_nblock),
tensor_operation::element_wise::PassThrough,
Sequence<1, PostShuffleThreadSliceSize_M, 1>,
Sequence<0, 1, 2>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>{mean_var_grid_desc_mblock_mperblock_nblock,
mean_var_count_thread_copy_index,
tensor_operation::element_wise::PassThrough{}};
mean_var_thread_copy_vgpr_to_global.Run(
thread_welford_desc_I_m_I,
make_tuple(I0, I0, I0),
mean_thread_buf,
mean_var_grid_desc_mblock_mperblock_nblock,
mean_grid_buf); // write mean
mean_var_thread_copy_vgpr_to_global.Run(
thread_welford_desc_I_m_I,
make_tuple(I0, I0, I0),
var_thread_buf,
mean_var_grid_desc_mblock_mperblock_nblock,
var_grid_buf); // write variance
// Stride of count is [0, 1]. Only the first row in count[0, 0:nblock] need
// to be written.
if(i == 0 && block_work_idx[I0] == 0 &&
post_shuffle_thread_cluster_idx[I0] == 0)
{
auto count_thread_copy_vgpr_to_global = ThreadwiseTensorSliceTransfer_v1r3<
int32_t,
int32_t,
decltype(thread_welford_desc_I_m_I),
decltype(count_grid_desc_mblock_mperblock_nblock),
tensor_operation::element_wise::PassThrough,
Sequence<1, PostShuffleThreadSliceSize_M, 1>,
Sequence<0, 1, 2>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
false>{count_grid_desc_mblock_mperblock_nblock,
mean_var_count_thread_copy_index,
tensor_operation::element_wise::PassThrough{}};
count_thread_copy_vgpr_to_global.Run(
thread_welford_desc_I_m_I,
make_tuple(I0, I0, I0),
count_thread_buf,
count_grid_desc_mblock_mperblock_nblock,
welford_count_grid_buf); // write count
}
}
});
} // shuffle C + Ds + welford + write out
} // run
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
namespace ck {
template <typename EMeanVarDataType,
typename HDataType,
typename GammaDataType,
typename BetaDataType,
typename ComputeDataType,
typename EHGridDesc_M_N,
typename MeanVarGridDesc_M_NBlock,
typename CountGridDesc_M_NBlock,
typename GammaBetaGridDesc_N,
typename HElementwiseOperation,
index_t BlockSize,
index_t MThreadClusterSize,
index_t NThreadClusterSize,
index_t MThreadSliceSize,
index_t NThreadSliceSize,
index_t ESrcVectorSize,
index_t HDstVectorSize,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorSize>
struct GridwiseWelfordSecondHalfLayernorm2d
{
static_assert(NThreadSliceSize % ESrcVectorSize == 0 &&
NThreadSliceSize % GammaSrcVectorSize == 0 &&
NThreadSliceSize % BetaSrcVectorSize == 0,
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(NThreadSliceSize % HDstVectorSize == 0,
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using ThreadClusterLengths_M_N = Sequence<MThreadClusterSize, NThreadClusterSize>;
using ThreadBufferDimAccessOrder = Sequence<0, 1>;
using ThreadClusterArrangeOrder = Sequence<0, 1>;
static constexpr auto thread_cluster_desc_m_n =
make_cluster_descriptor(ThreadClusterLengths_M_N{}, ThreadClusterArrangeOrder{});
using ThreadBufferLengths_M_N = Sequence<MThreadSliceSize, NThreadSliceSize>;
static constexpr auto thread_buffer_desc_m_n = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<NThreadSliceSize>{}));
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
static constexpr auto thread_buffer_desc_m_1 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
using ThreadBufferLengths_N = Sequence<NThreadSliceSize>;
static constexpr auto thread_buffer_desc_n =
make_naive_tensor_descriptor_packed(make_tuple(Number<NThreadSliceSize>{}));
using ThreadWelfordSrcDesc_M_1 = decltype(thread_buffer_desc_m_1);
using ThreadWelfordDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelfordMerge<ComputeDataType, ThreadWelfordSrcDesc_M_1, ThreadWelfordDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<ComputeDataType,
BlockSize,
ThreadClusterLengths_M_N,
ThreadClusterArrangeOrder>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t N_BlockTileSize = NThreadClusterSize * NThreadSliceSize;
__device__ static void Run(const EMeanVarDataType* __restrict__ p_e_grid,
const EMeanVarDataType* __restrict__ p_in_welford_mean_grid,
const EMeanVarDataType* __restrict__ p_in_welford_var_grid,
const int32_t* __restrict__ p_in_welford_count_grid,
const GammaDataType* __restrict__ p_gamma_grid,
const BetaDataType* __restrict__ p_beta_grid,
HDataType* __restrict__ p_h_grid,
const EHGridDesc_M_N& e_grid_desc_m_n,
const EHGridDesc_M_N& h_grid_desc_m_n,
const MeanVarGridDesc_M_NBlock& mean_var_grid_desc_m_nblock,
const CountGridDesc_M_NBlock& count_grid_desc_m_nblock,
const GammaBetaGridDesc_N& gamma_grid_desc_n,
const GammaBetaGridDesc_N& beta_grid_desc_n,
index_t numMeanVarCountBlockTileIteration_N,
index_t NBlockClusterLength,
ComputeDataType epsilon,
HElementwiseOperation h_element_op)
{
// Thread/Block id
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const auto block_work_idx = make_tuple(block_global_id / NBlockClusterLength,
block_global_id % NBlockClusterLength);
const auto thread_cluster_idx =
thread_cluster_desc_m_n.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_n_cluster_id = thread_cluster_idx[I1];
// Global Memory
const auto e_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_m_n.GetElementSpaceSize());
const auto welford_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_mean_grid, mean_var_grid_desc_m_nblock.GetElementSpaceSize());
const auto welford_var_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_var_grid, mean_var_grid_desc_m_nblock.GetElementSpaceSize());
const auto welford_count_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_count_grid, count_grid_desc_m_nblock.GetElementSpaceSize());
const auto gamma_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_gamma_grid, gamma_grid_desc_n.GetElementSpaceSize());
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_grid, beta_grid_desc_n.GetElementSpaceSize());
auto h_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_h_grid, h_grid_desc_m_n.GetElementSpaceSize());
// VGPR
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
in_welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
in_welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
in_welford_count_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * NThreadSliceSize,
true>
e_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * NThreadSliceSize,
true>
gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * NThreadSliceSize,
true>
beta_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
ComputeDataType,
MThreadSliceSize * NThreadSliceSize,
true>
h_thread_buf;
// IO
auto threadwise_mean_load_m_nblock =
ThreadwiseTensorSliceTransfer_v2<EMeanVarDataType,
ComputeDataType,
MeanVarGridDesc_M_NBlock,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
ThreadBufferDimAccessOrder,
1,
1,
1,
true>(
mean_var_grid_desc_m_nblock,
make_multi_index(block_work_idx[I0] * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_n_cluster_id));
auto threadwise_var_load_m_nblock =
ThreadwiseTensorSliceTransfer_v2<EMeanVarDataType,
ComputeDataType,
MeanVarGridDesc_M_NBlock,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
ThreadBufferDimAccessOrder,
1,
1,
1,
true>(
mean_var_grid_desc_m_nblock,
make_multi_index(block_work_idx[I0] * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_n_cluster_id));
auto threadwise_count_load_m_nblock =
ThreadwiseTensorSliceTransfer_v2<int32_t,
int32_t,
CountGridDesc_M_NBlock,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
ThreadBufferDimAccessOrder,
1,
1,
1,
true>(
count_grid_desc_m_nblock,
make_multi_index(block_work_idx[I0] * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_n_cluster_id));
auto threadwise_e_load_m_n =
ThreadwiseTensorSliceTransfer_v2<EMeanVarDataType,
ComputeDataType,
decltype(e_grid_desc_m_n),
decltype(thread_buffer_desc_m_n),
ThreadBufferLengths_M_N,
ThreadBufferDimAccessOrder,
1, // SrcVectorDim
ESrcVectorSize,
1,
true>(
e_grid_desc_m_n,
make_multi_index(
block_work_idx[I0] * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_work_idx[I1] * N_BlockTileSize + thread_n_cluster_id * NThreadSliceSize));
auto threadwise_gamma_load_n =
ThreadwiseTensorSliceTransfer_v2<GammaDataType,
ComputeDataType,
decltype(gamma_grid_desc_n),
decltype(thread_buffer_desc_n),
ThreadBufferLengths_N,
Sequence<0>, // DimAccessOrder,
0, // SrcVectorDim,
GammaSrcVectorSize,
1,
true>(
gamma_grid_desc_n,
make_multi_index(block_work_idx[I1] * N_BlockTileSize +
thread_n_cluster_id * NThreadSliceSize));
auto threadwise_beta_load_n =
ThreadwiseTensorSliceTransfer_v2<BetaDataType,
ComputeDataType,
decltype(beta_grid_desc_n),
decltype(thread_buffer_desc_n),
ThreadBufferLengths_N,
Sequence<0>, // DimAccessOrder,
0, // SrcVectorDim,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_n,
make_multi_index(block_work_idx[I1] * N_BlockTileSize +
thread_n_cluster_id * NThreadSliceSize));
auto threadwise_h_store_m_n =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
HDataType,
decltype(thread_buffer_desc_m_n),
decltype(h_grid_desc_m_n),
HElementwiseOperation,
ThreadBufferLengths_M_N,
ThreadBufferDimAccessOrder,
1, // DstVectorDim
HDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
h_grid_desc_m_n,
make_multi_index(
block_work_idx[I0] * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_work_idx[I1] * N_BlockTileSize + thread_n_cluster_id * NThreadSliceSize),
h_element_op);
// step1: Merge mean and variance
constexpr auto mean_var_count_thread_copy_step_I0_n =
make_multi_index(I0, NThreadClusterSize);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_mean_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
welford_var_thread_buf(I) = type_convert<ComputeDataType>(0.0f);
welford_count_thread_buf(I) = 0;
});
for(index_t n = 0; n < numMeanVarCountBlockTileIteration_N; ++n)
{
threadwise_mean_load_m_nblock.Run(mean_var_grid_desc_m_nblock,
welford_mean_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_mean_thread_buf);
threadwise_var_load_m_nblock.Run(mean_var_grid_desc_m_nblock,
welford_var_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_var_thread_buf);
threadwise_count_load_m_nblock.Run(count_grid_desc_m_nblock,
welford_count_global_val_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_count_thread_buf);
ThreadwiseWelford::Run(in_welford_mean_thread_buf,
in_welford_var_thread_buf,
in_welford_count_thread_buf,
welford_mean_thread_buf,
welford_var_thread_buf,
welford_count_thread_buf);
threadwise_mean_load_m_nblock.MoveSrcSliceWindow(mean_var_grid_desc_m_nblock,
mean_var_count_thread_copy_step_I0_n);
threadwise_var_load_m_nblock.MoveSrcSliceWindow(mean_var_grid_desc_m_nblock,
mean_var_count_thread_copy_step_I0_n);
threadwise_count_load_m_nblock.MoveSrcSliceWindow(count_grid_desc_m_nblock,
mean_var_count_thread_copy_step_I0_n);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseWelford::Run(
welford_mean_thread_buf(I), welford_var_thread_buf(I), welford_count_thread_buf(I));
});
// step2: normalization
// h[m, n] = [(e[m, n] - mean[m]) / sqrt(var[m] + eps)] * gamma[n] + beta[n]
threadwise_e_load_m_n.Run(e_grid_desc_m_n,
e_global_val_buf,
thread_buffer_desc_m_n,
make_tuple(I0, I0),
e_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto m) {
auto divisor = 1 / ck::math::sqrt(welford_var_thread_buf(m) + epsilon);
static_for<0, NThreadSliceSize, 1>{}([&](auto n) {
constexpr auto m_n = thread_buffer_desc_m_n.CalculateOffset(make_tuple(m, n));
h_thread_buf(Number<m_n>{}) =
(e_thread_buf(Number<m_n>{}) - welford_mean_thread_buf(m)) * divisor;
});
});
threadwise_gamma_load_n.Run(gamma_grid_desc_n,
gamma_global_val_buf,
thread_buffer_desc_n,
make_tuple(I0),
gamma_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto m) {
static_for<0, NThreadSliceSize, 1>{}([&](auto n) {
constexpr auto m_n = thread_buffer_desc_m_n.CalculateOffset(make_tuple(m, n));
h_thread_buf(Number<m_n>{}) = h_thread_buf(Number<m_n>{}) * gamma_thread_buf(n);
});
});
threadwise_beta_load_n.Run(beta_grid_desc_n,
beta_global_val_buf,
thread_buffer_desc_n,
make_tuple(I0),
beta_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto m) {
static_for<0, NThreadSliceSize, 1>{}([&](auto n) {
constexpr auto m_n = thread_buffer_desc_m_n.CalculateOffset(make_tuple(m, n));
h_thread_buf(Number<m_n>{}) = h_thread_buf(Number<m_n>{}) + beta_thread_buf(n);
});
});
threadwise_h_store_m_n.Run(thread_buffer_desc_m_n,
make_tuple(I0, I0),
h_thread_buf,
h_grid_desc_m_n,
h_global_val_buf);
} // run
};
} // namespace ck
......@@ -434,7 +434,7 @@ struct GridwiseElementwiseLayernormWelfordVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / __builtin_amdgcn_sqrtf(var_thread_buf(iM) + epsilon);
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, XThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
namespace ck {
template <typename TileLoadThreadGroup, index_t NumGemmKPrefetchStage>
struct GridwiseGemmLoadWave;
// 1-stage prefetch
template <typename TileLoadThreadGroup>
struct GridwiseGemmLoadWave<TileLoadThreadGroup, 1>
{
__host__ __device__ static constexpr bool IsSupported(index_t /* num_loop */)
{
// TODO: improve applicability
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainLoop(index_t num_loop)
{
return num_loop > 1;
}
template <bool HasMainLoop,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep>
static __device__ void RunLoadWavePipeline(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
index_t num_loop)
{
// global read 0
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
// move to 1
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// LDS write 0
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
// sync for Load threads()
block_sync_lds();
// global read i + 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
// move to i + 2
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// sync with math threads()
block_sync_lds();
// LDS write i+1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
++i;
} while(i < (num_loop - 1));
}
// tail
{
block_sync_lds();
// GEMM num_loop - 1
}
}
};
template <typename TileMathThreadGroup, index_t NumGemmKPrefetchStage>
struct GridwiseGemmMathWave;
// 1- stage prefetch
template <typename TileMathThreadGroup>
struct GridwiseGemmMathWave<TileMathThreadGroup, 1>
{
__host__ __device__ static constexpr bool IsSupported(index_t /* num_loop */) { return true; }
__host__ __device__ static constexpr bool CalculateHasMainLoop(index_t num_loop)
{
return num_loop > 1;
}
template <bool HasMainLoop,
typename ABlockBuffer,
typename BBlockBuffer,
typename BlockwiseGemm,
typename CThreadBuffer>
static __device__ void RunMathWavePipeline(ABlockBuffer& a_block_buf,
BBlockBuffer& b_block_buf,
const BlockwiseGemm& block_gemm,
CThreadBuffer& c_thread_buf,
index_t num_loop)
{
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
block_sync_lds();
// GEMM i
block_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds();
++i;
} while(i < (num_loop - 1));
}
// tail
{
block_sync_lds();
// GEMM num_loop - 1
block_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_waveletmodel.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename ABDataType,
typename FloatGemmAcc,
typename EDataTypeShuffle,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename EElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_M_K,
typename BGridDesc_N_K,
typename EGridDesc_M_N,
index_t NumGemmKPrefetchStage,
index_t TileLoadThreadGroupSize,
index_t TileMathThreadGroupSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
struct TileLoadThreadGroup
{
__device__ static constexpr index_t GetNumOfThread() { return TileLoadThreadGroupSize; }
__device__ static constexpr bool IsBelong()
{
return (get_thread_local_1d_id() >= TileLoadThreadGroupSize);
}
__device__ static index_t GetThreadId()
{
return get_thread_local_1d_id() - TileMathThreadGroupSize;
}
};
struct TileMathThreadGroup
{
__device__ static constexpr index_t GetNumOfThread() { return TileMathThreadGroupSize; }
__device__ static constexpr bool IsBelong()
{
return get_thread_local_1d_id() < TileMathThreadGroupSize;
}
__device__ static index_t GetThreadId() { return get_thread_local_1d_id(); }
};
using CShuffleBlockTransferThreadGroup = ThisThreadBlock<TileMathThreadGroupSize>;
// load and math+store Wave pipelines.
// TODO: build pipelines blocks scheduling parallel tasks
using GridwiseGemmLoad = GridwiseGemmLoadWave<TileLoadThreadGroup, NumGemmKPrefetchStage>;
using GridwiseGemmMath = GridwiseGemmMathWave<TileMathThreadGroup, NumGemmKPrefetchStage>;
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ABDataType),
c_block_size * sizeof(EDataTypeShuffle));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2ETileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_M_K& a_grid_desc_m_k,
const BGridDesc_N_K& b_grid_desc_n_k,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2ETileMap& /*block_2_etile_map*/)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
// check consistency of desc
if(!(M == e_grid_desc_m_n.GetLength(I0) && N == e_grid_desc_m_n.GetLength(I1) &&
K == b_grid_desc_n_k.GetLength(I1)))
{
return false;
}
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmMath::IsSupported(num_k_loop))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_m_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
b_grid_desc_n_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmMath::CalculateHasMainLoop(num_loop);
}
// return block_id to E matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
constexpr auto M01 = I1;
constexpr auto N01 = I1;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M0, M01)),
make_unmerge_transform(make_tuple(N0, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, N0, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
// A desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultAGridDescriptor_AK0_M_AK1(const AGridDesc_M_K& a_grid_desc_m_k)
{
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// B desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultBGridDescriptor_BK0_N_BK1(const BGridDesc_N_K& b_grid_desc_n_k)
{
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// E desc for destination in blockwise copy
template <typename EGridDescriptor_M_N>
__host__ __device__ static constexpr auto MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const EGridDescriptor_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
using EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(EGridDesc_M_N{}))>;
using DefaultBlock2ETileMap =
remove_cvref_t<decltype(MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
template <bool HasMainKBlockLoop,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename Block2ETileMap>
__device__ static void Run(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const EElementwiseOperation& e_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
// build loadWave and MathWave pipelines
// loadWave and MathWave synchronized through LDS
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1, 0, 0);
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
if(TileLoadThreadGroup::IsBelong())
{
// LoadWave
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<TileLoadThreadGroup,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<TileLoadThreadGroup,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
GridwiseGemmLoad::template RunLoadWavePipeline<HasMainKBlockLoop>(
a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
num_k_block_main_loop);
block_sync_lds();
block_sync_lds();
}
else if(TileMathThreadGroup::IsBelong())
{
// branch early for math wave
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<
TileMathThreadGroupSize,
ABDataType,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack>{};
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// TODO re-architect LDS+math stages
// Writing data to GMEM: only math wave is doing the work in cshuffle
GridwiseGemmMath::template RunMathWavePipeline<HasMainKBlockLoop>(
a_block_buf, b_block_buf, blockwise_gemm, c_thread_buf, num_k_block_main_loop);
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<EDataTypeShuffle*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<>{},
Sequence<0, 2, 4, 5, 6>{},
Sequence<>{},
Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
FloatGemmAcc,
EDataTypeShuffle,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
CShuffleBlockTransferThreadGroup, // ThreadGroup
EElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
EDataTypeShuffle, // typename SrcData,
EDataType, // typename DstData,
decltype(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0),
e_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_c_global.GetNumOfAccess(), "wrong!");
// Different way of getting coalesced writes:
// We can get rid of doing cshuffle. Instead of reading A rows in contiguous manner
// do it interleaved, then mfma can have nice c-mat layout as below:
//
// TODO
// We do not need to do LDS swizzle to align global writes writing cache lines:
// v_mfma cmat, amat, bmat, cmat - c-mat register layout are 1xN
// elments (N is vertical or strided
// dimension)
// v_mfma cmat, bmat, amat, cmat - c-mat register layout are Mx1
// elments (M is coalescing
// dimension) by enumerating M index in
// amat, bmat you can align cmat
// register(s) to contiguous M elements
// for example
// 1st mfma instruction output space : 0 4 8 12 16 ....
// 2nd mfma instruction output space : 1 5 9 13 17 ....
// 3rd mfma instruction output space : 2 6 10 14 18 ....
// 4th mfma instruction output space : 3 7 11 15 19 ....
// you can pack 4 registers output space into 2WORD and do global write
// (no LDS swizzling required)
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
c_shuffle_block_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
e_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
}
}
};
} // namespace ck
......@@ -319,7 +319,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / __builtin_amdgcn_sqrtf(var_thread_buf(iM) + epsilon);
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, XThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......
......@@ -17,33 +17,24 @@ template <typename GridwiseSparseEmbedding,
typename BetaDataType,
typename AccDataType,
typename OutType,
typename OutGridDesc>
typename OutGridDesc,
typename EmbElementwiseOperation,
ck::index_t NumEmbeddings>
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
__global__ void kernel_sparse_embedding3_forward_layernorm(OutType* p_out,
const EmbType* p_emb_a,
const EmbType* p_emb_b,
const EmbType* p_emb_c,
const IndexType* p_index_a,
const IndexType* p_index_b,
const IndexType* p_index_c,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
const OutGridDesc out_grid_desc,
const AccDataType epsilon)
__global__ void kernel_sparse_embeddings_forward_layernorm(
OutType* p_out,
const ck::Array<EmbType*, NumEmbeddings> p_embs,
const ck::Array<IndexType*, NumEmbeddings> p_indexes,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
const OutGridDesc out_grid_desc,
const AccDataType epsilon,
const EmbElementwiseOperation emb_elementwise_op)
{
GridwiseSparseEmbedding::Run(p_out,
p_emb_a,
p_emb_b,
p_emb_c,
p_index_a,
p_index_b,
p_index_c,
p_gamma,
p_beta,
out_grid_desc,
epsilon);
GridwiseSparseEmbedding::Run(
p_out, p_embs, p_indexes, p_gamma, p_beta, out_grid_desc, epsilon, emb_elementwise_op);
}
template <typename EmbType,
......@@ -53,14 +44,16 @@ template <typename EmbType,
typename AccDataType,
typename OutType,
typename OutGridDesc,
typename EmbElementwiseOperation,
ck::index_t BlockSize,
ck::index_t DimClusterSize,
ck::index_t RowClusterSize,
ck::index_t DimPerBlock, // Row x Dim, along Dim
ck::index_t RowPerBlock, // Row x Dim, along Row
ck::index_t DimThreadSize, // this is actually not vector, but number of registers
ck::index_t RowVectorSize>
struct GridwiseSparseEmbedding3ForwardLayernorm
ck::index_t RowVectorSize,
ck::index_t NumEmbeddings>
struct GridwiseSparseEmbeddingsForwardLayernorm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -97,23 +90,17 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
BlockwiseWelford<AccDataType, BlockSize, ThreadClusterLength, Sequence<0, 1>>;
__device__ static void Run(OutType* p_out,
const EmbType* p_emb_a,
const EmbType* p_emb_b,
const EmbType* p_emb_c,
const IndexType* p_index_a,
const IndexType* p_index_b,
const IndexType* p_index_c,
const ck::Array<EmbType*, NumEmbeddings> p_embs,
const ck::Array<IndexType*, NumEmbeddings> p_indexes,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
const OutGridDesc,
const AccDataType epsilon)
const AccDataType epsilon,
const EmbElementwiseOperation emb_elementwise_op)
{
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
// const auto index_length = out_grid_desc.GetLength(I0);
// const auto emb_dim = out_grid_desc.GetLength(I1);
constexpr auto thread_cluster_desc =
make_cluster_descriptor(Sequence<DimClusterSize, RowClusterSize>{}, Sequence<0, 1>{});
......@@ -141,13 +128,11 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
constexpr auto gamma_beta_buf_desc =
make_naive_tensor_descriptor_packed(make_tuple(RowSubBlocks, RowVectorSize));
StaticBuffer<AddressSpaceEnum::Vgpr, EmbType, thread_buf_size, true> in_thread_buf_a;
StaticBuffer<AddressSpaceEnum::Vgpr, EmbType, thread_buf_size, true> in_thread_buf_b;
StaticBuffer<AddressSpaceEnum::Vgpr, EmbType, thread_buf_size, true> in_thread_buf_c;
StaticBuffer<AddressSpaceEnum::Sgpr, IndexType, DimPerBlock, true> index_buf_a;
StaticBuffer<AddressSpaceEnum::Sgpr, IndexType, DimPerBlock, true> index_buf_b;
StaticBuffer<AddressSpaceEnum::Sgpr, IndexType, DimPerBlock, true> index_buf_c;
ck::Array<StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, thread_buf_size, true>,
NumEmbeddings>
in_thread_bufs;
ck::Array<StaticBuffer<AddressSpaceEnum::Vgpr, IndexType, DimPerBlock, true>, NumEmbeddings>
index_bufs;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, thread_buf_size, true> acc_thread_buf;
......@@ -160,42 +145,31 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, mean_var_buf_size, true> var_thread_buf;
auto load_current_sub_row = [&](auto i_dim_sub_, auto i_row_sub_) {
vector_type_maker_t<EmbType, RowVectorSize> emb_vector_a;
vector_type_maker_t<EmbType, RowVectorSize> emb_vector_b;
vector_type_maker_t<EmbType, RowVectorSize> emb_vector_c;
using src_vector_t = typename decltype(emb_vector_a)::type;
ck::Array<vector_type_maker_t<EmbType, RowVectorSize>, NumEmbeddings> emb_vectors;
auto emb_a = emb_vectors[0];
using src_vector_t = typename decltype(emb_a)::type;
static_for<0, DimThreadSize, 1>{}([&](auto i_dim_vec_) {
constexpr auto current_dim = i_dim_sub_ * DimPerSubBlock + i_dim_vec_;
IndexType index_a = index_buf_a[Number<current_dim>{}];
IndexType index_b = index_buf_b[Number<current_dim>{}];
IndexType index_c = index_buf_c[Number<current_dim>{}];
auto thread_offset = (thread_row_cluster_id + i_row_sub_ * RowClusterSize) *
sizeof(EmbType) * RowVectorSize;
static_for<0, NumEmbeddings, 1>{}([&](auto i_embedding_) {
IndexType index = index_bufs[i_embedding_][Number<current_dim>{}];
int32x4_t emb_res_a =
make_wave_buffer_resource_with_default_range(p_emb_a + index_a * RowPerBlock);
int32x4_t emb_res_b =
make_wave_buffer_resource_with_default_range(p_emb_b + index_b * RowPerBlock);
int32x4_t emb_res_c =
make_wave_buffer_resource_with_default_range(p_emb_c + index_c * RowPerBlock);
emb_vector_a.template AsType<src_vector_t>()(I0) =
amd_buffer_load_impl<EmbType, RowVectorSize>(emb_res_a, thread_offset, 0);
emb_vector_b.template AsType<src_vector_t>()(I0) =
amd_buffer_load_impl<EmbType, RowVectorSize>(emb_res_b, thread_offset, 0);
emb_vector_c.template AsType<src_vector_t>()(I0) =
amd_buffer_load_impl<EmbType, RowVectorSize>(emb_res_c, thread_offset, 0);
int32x4_t emb_res = make_wave_buffer_resource_with_default_range(
p_embs[i_embedding_] + index * RowPerBlock);
emb_vectors(i_embedding_).template AsType<src_vector_t>()(I0) =
amd_buffer_load_impl<EmbType, RowVectorSize>(emb_res, thread_offset, 0);
});
static_for<0, RowVectorSize, 1>{}([&](auto i_row_vec_) {
constexpr auto register_offset = thread_buf_desc.CalculateOffset(
make_tuple(i_dim_sub_, i_dim_vec_, i_row_sub_, i_row_vec_));
in_thread_buf_a(Number<register_offset>{}) =
emb_vector_a.template AsType<EmbType>()[i_row_vec_];
in_thread_buf_b(Number<register_offset>{}) =
emb_vector_b.template AsType<EmbType>()[i_row_vec_];
in_thread_buf_c(Number<register_offset>{}) =
emb_vector_c.template AsType<EmbType>()[i_row_vec_];
static_for<0, NumEmbeddings, 1>{}([&](auto i_embedding_) {
in_thread_bufs(i_embedding_)(Number<register_offset>{}) =
ck::type_convert<AccDataType>(
emb_vectors[i_embedding_].template AsType<EmbType>()[i_row_vec_]);
});
});
});
};
......@@ -205,14 +179,17 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
static_for<0, RowVectorSize, 1>{}([&](auto i_row_vec_) {
constexpr auto register_offset = thread_buf_desc.CalculateOffset(
make_tuple(i_dim_sub_, i_dim_vec_, i_row_sub_, i_row_vec_));
AccDataType va =
ck::type_convert<AccDataType>(in_thread_buf_a(Number<register_offset>{}));
AccDataType vb =
ck::type_convert<AccDataType>(in_thread_buf_b(Number<register_offset>{}));
AccDataType vc =
ck::type_convert<AccDataType>(in_thread_buf_c(Number<register_offset>{}));
acc_thread_buf(Number<register_offset>{}) += va + vb + vc;
auto in_data_refs = generate_tie(
[&](auto i_embedding_) -> const auto& {
return in_thread_bufs(i_embedding_)(Number<register_offset>{});
},
Number<NumEmbeddings>{});
auto out_data_refs = generate_tie(
[&](auto output_index_) -> auto& {
return acc_thread_buf(Number<register_offset>{});
},
Number<1>{});
unpack2(emb_elementwise_op, out_data_refs, in_data_refs);
});
});
};
......@@ -242,7 +219,8 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
constexpr auto mean_var_offset =
mean_var_buf_desc.CalculateOffset(make_tuple(i_dim_sub_, i_dim_vec_));
auto divisor =
1 / __builtin_amdgcn_sqrtf(var_thread_buf(Number<mean_var_offset>{}) + epsilon);
static_for<0, RowVectorSize, 1>{}([&](auto i_row_vec_) {
constexpr auto register_offset = thread_buf_desc.CalculateOffset(
make_tuple(i_dim_sub_, i_dim_vec_, i_row_sub_, i_row_vec_));
......@@ -250,9 +228,8 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
gamma_beta_buf_desc.CalculateOffset(make_tuple(i_row_sub_, i_row_vec_));
auto acc_val = acc_thread_buf[Number<register_offset>{}];
acc_val = (acc_val - mean_thread_buf(Number<mean_var_offset>{})) /
sqrt(var_thread_buf(Number<mean_var_offset>{}) + epsilon);
acc_val = acc_val * gamma_thread_buf[Number<gamma_beta_offset>{}] +
acc_val = (acc_val - mean_thread_buf(Number<mean_var_offset>{})) * divisor;
acc_val = acc_val * gamma_thread_buf[Number<gamma_beta_offset>{}] +
beta_thread_buf[Number<gamma_beta_offset>{}];
out_vector.template AsType<OutType>()(Number<i_row_vec_>{}) =
......@@ -273,9 +250,10 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
// first load index
ck::static_for<0, DimPerBlock, 1>{}([&](auto i_idx_) {
// prefer use s_load
index_buf_a(i_idx_) = p_index_a[index_start + i_idx_.value];
index_buf_b(i_idx_) = p_index_b[index_start + i_idx_.value];
index_buf_c(i_idx_) = p_index_c[index_start + i_idx_.value];
ck::static_for<0, NumEmbeddings, 1>{}([&](auto i_embedding_) {
index_bufs(i_embedding_)(i_idx_) =
p_indexes[i_embedding_][index_start + i_idx_.value];
});
});
// load gamma/beta
......@@ -329,7 +307,6 @@ struct GridwiseSparseEmbedding3ForwardLayernorm
static_for<0, mean_var_buf_size, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseWelford::Run(
mean_thread_buf(I), var_thread_buf(I), threadwise_welford.cur_count_);
});
......
......@@ -251,27 +251,27 @@ constexpr T GetIdentityValueForInMemoryDataOperation(InMemoryDataOperationEnum o
};
template <InMemoryDataOperationEnum Operation, typename DataType>
struct InMemoryDataOperatonSupportedOnDataType
struct InMemoryDataOperationSupportedOnDataType
{
static constexpr bool value = false;
};
template <typename DataType>
struct InMemoryDataOperatonSupportedOnDataType<InMemoryDataOperationEnum::AtomicAdd, DataType>
struct InMemoryDataOperationSupportedOnDataType<InMemoryDataOperationEnum::AtomicAdd, DataType>
{
static constexpr bool value =
is_same<DataType, float>::value || is_same<DataType, double>::value;
};
template <typename DataType>
struct InMemoryDataOperatonSupportedOnDataType<InMemoryDataOperationEnum::AtomicMax, DataType>
struct InMemoryDataOperationSupportedOnDataType<InMemoryDataOperationEnum::AtomicMax, DataType>
{
static constexpr bool value =
is_same<DataType, float>::value || is_same<DataType, double>::value;
};
template <typename DataType>
struct InMemoryDataOperatonSupportedOnDataType<InMemoryDataOperationEnum::Set, DataType>
struct InMemoryDataOperationSupportedOnDataType<InMemoryDataOperationEnum::Set, DataType>
{
static constexpr bool value =
is_same<DataType, float>::value || is_same<DataType, double>::value ||
......@@ -280,7 +280,7 @@ struct InMemoryDataOperatonSupportedOnDataType<InMemoryDataOperationEnum::Set, D
};
template <typename DataType>
struct InMemoryDataOperatonSupportedOnDataType<InMemoryDataOperationEnum::Add, DataType>
struct InMemoryDataOperationSupportedOnDataType<InMemoryDataOperationEnum::Add, DataType>
{
static constexpr bool value =
is_same<DataType, float>::value || is_same<DataType, double>::value ||
......
......@@ -18,6 +18,7 @@ __device__ void block_sync_lds()
__syncthreads();
#endif
}
__device__ void s_nop()
{
#if 1
......
......@@ -90,10 +90,13 @@ struct ReferenceLayernorm : public device::BaseOperator
for(int m = 0; m < M; ++m)
{
AccDataType divisor =
static_cast<AccDataType>(1) / ck::math::sqrt(var(m) + arg.epsilon_);
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
auto y_val = (x_val - mean(m)) * divisor;
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.acc_elementwise_op_(y_val, y_val);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/ck.hpp"
#include "ck/utility/ignore.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation,
bool PropagateNan,
bool OutputIndex>
struct ReferenceReduce : public device::DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>
{
using IndexDataType = int32_t;
static constexpr int NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t NumSrcDim = Rank;
static constexpr index_t NumDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, Rank> inLengths,
const std::array<index_t, Rank> inStrides,
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
double alpha,
double beta,
const InDataType* in_host,
OutDataType* out_host,
IndexDataType* out_index_host,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: reduceDims_(reduceDims),
outLengths_(outLengths),
outStrides_(outStrides),
in_host_(in_host),
out_host_(out_host),
out_index_host_(out_index_host),
in_elementwise_op_(in_elementwise_op),
acc_elementwise_op_(acc_elementwise_op)
{
using ck::host_common::get_index_set;
if(std::any_of(
reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
if constexpr(NumInvariantDim > 0)
{
// get invariant_dims[] and invariant_lengths[]
for(int dim = 0, i = 0; dim < Rank; dim++)
if(std::none_of(
reduceDims.begin(), reduceDims.end(), [&](int d) { return d == dim; }))
{
invariantDims_[i] = dim;
invariant_lengths_[i] = inLengths[dim];
i++;
};
};
// get reduce_lengths_[]
for(int j = 0, i = 0; j < NumReduceDim; j++)
{
int dim = reduceDims[j];
reduce_lengths_[i++] = inLengths[dim];
};
if constexpr(NumInvariantDim > 0)
{
// check invariant_lengths_ and outLengths
for(int i = 0; i < NumInvariantDim; i++)
if(invariant_lengths_[i] != outLengths_[i])
throw std::runtime_error("Invalid lengths parameters!");
}
if constexpr(NumInvariantDim > 0)
{
for(int j = 0, i = 0; j < NumInvariantDim; j++)
{
int dim = invariantDims_[j];
in_invariant_strides_[i] = inStrides[dim];
i++;
};
};
for(int j = 0, i = 0; j < NumReduceDim; j++)
{
int dim = reduceDims_[j];
in_reduce_strides_[i] = inStrides[dim];
i++;
};
if constexpr(NumInvariantDim > 0)
invariant_index_set_ = get_index_set<NumInvariantDim>(invariant_lengths_);
reduce_index_set_ = get_index_set<NumReduceDim>(reduce_lengths_);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
};
const std::array<int, NumReduceDim> reduceDims_;
std::array<int, NumInvariantDim> invariantDims_;
std::array<index_t, NumInvariantDim> invariant_lengths_;
std::array<index_t, NumReduceDim> reduce_lengths_;
const std::array<index_t, NumDstDim> outLengths_;
const std::array<index_t, NumDstDim> outStrides_;
std::array<index_t, NumInvariantDim> in_invariant_strides_;
std::array<index_t, NumReduceDim> in_reduce_strides_;
const InDataType* in_host_;
OutDataType* out_host_;
IndexDataType* out_index_host_;
const InElementwiseOperation in_elementwise_op_;
const AccElementwiseOperation acc_elementwise_op_;
AccDataType alpha_;
AccDataType beta_;
std::vector<std::array<index_t, NumInvariantDim>> invariant_index_set_;
std::vector<std::array<index_t, NumReduceDim>> reduce_index_set_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
ignore = stream_config;
using ck::float_equal_one;
using ck::float_equal_zero;
using ck::type_convert;
using ck::host_common::get_index_set;
using ck::host_common::get_offset_from_index;
if constexpr(OutputIndex)
{
using Accumulation = ck::detail::AccumulateWithIndexAndNanCheck<PropagateNan,
ReduceOperation,
AccDataType,
IndexDataType>;
if constexpr(NumInvariantDim == 0)
{
AccDataType accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
for(std::size_t i = 0; i < arg.reduce_index_set_.size(); i++)
{
auto in_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, arg.reduce_index_set_[i]);
auto currVal = type_convert<AccDataType>(arg.in_host_[in_offset]);
arg.in_elementwise_op_(currVal, currVal);
auto currIndex = static_cast<IndexDataType>(i);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[0]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[0] = type_convert<OutDataType>(accuVal);
arg.out_index_host_[0] = accuIndex;
}
else
{
auto thread_reduce_func = [&](auto invariant_index) {
AccDataType accuVal =
ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
auto in_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.in_invariant_strides_, invariant_index);
for(std::size_t i = 0; i < arg.reduce_index_set_.size(); i++)
{
auto in_reduce_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, arg.reduce_index_set_[i]);
auto currVal = type_convert<AccDataType>(
arg.in_host_[in_invariant_offset + in_reduce_offset]);
arg.in_elementwise_op_(currVal, currVal);
auto currIndex = static_cast<IndexDataType>(i);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
auto dst_offset = get_offset_from_index<NumInvariantDim>(arg.outStrides_,
invariant_index);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[dst_offset]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[dst_offset] = type_convert<OutDataType>(accuVal);
arg.out_index_host_[dst_offset] = accuIndex;
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end =
std::min((it + 1) * work_per_thread, arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; i++)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
};
}
else
{
using Accumulation =
ck::detail::AccumulateWithNanCheck<PropagateNan, ReduceOperation, AccDataType>;
if constexpr(NumInvariantDim == 0)
{
AccDataType accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
for(const auto& reduce_index : arg.reduce_index_set_)
{
auto in_offset = get_offset_from_index<NumReduceDim>(arg.in_reduce_strides_,
reduce_index);
auto currVal = type_convert<AccDataType>(arg.in_host_[in_offset]);
arg.in_elementwise_op_(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[0]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[0] = type_convert<OutDataType>(accuVal);
}
else
{
auto thread_reduce_func = [&](auto invariant_index) {
AccDataType accuVal =
ReduceOperation::template GetIdentityValue<AccDataType>();
auto in_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.in_invariant_strides_, invariant_index);
for(const auto& reduce_index : arg.reduce_index_set_)
{
auto in_reduce_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, reduce_index);
auto currVal = type_convert<AccDataType>(
arg.in_host_[in_invariant_offset + in_reduce_offset]);
arg.in_elementwise_op_(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
auto dst_offset = get_offset_from_index<NumInvariantDim>(arg.outStrides_,
invariant_index);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[dst_offset]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[dst_offset] = type_convert<OutDataType>(accuVal);
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end =
std::min((it + 1) * work_per_thread, arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; i++)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
};
};
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
ignore = p_arg;
return true;
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> inLengths,
const std::array<index_t, Rank> inStrides,
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
double alpha,
double beta,
const void* in_host,
const void* in_index_host,
void* out_host,
void* out_index_host,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
ignore = in_index_host;
return std::make_unique<Argument>(inLengths,
inStrides,
outLengths,
outStrides,
reduceDims,
alpha,
beta,
static_cast<const InDataType*>(in_host),
static_cast<OutDataType*>(out_host),
static_cast<IndexDataType*>(out_index_host),
in_elementwise_op,
acc_elementwise_op);
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_Reduce<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -24,11 +24,14 @@ struct ReferenceSoftmax : public device::BaseOperator
{
Argument(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
double alpha,
double beta,
const std::vector<index_t> sm_reduce_dims)
: in_(in), out_(out), alpha_(alpha), beta_(beta), sm_reduce_dims_(sm_reduce_dims)
: in_(in), out_(out), sm_reduce_dims_(sm_reduce_dims)
{
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<AccDataType>(beta);
// std::cout << "debug: scalar dims: ";
for(size_t i = 0; i < in.mDesc.GetNumOfDimension(); i++)
{
......@@ -143,8 +146,8 @@ struct ReferenceSoftmax : public device::BaseOperator
static auto MakeArgument(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
double alpha,
double beta,
const std::vector<index_t> sm_reduce_dims)
{
return Argument{in, out, alpha, beta, sm_reduce_dims};
......
......@@ -90,6 +90,7 @@ using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_contraction_bias_permute_m2_n3_k1_xdl_c_shuffle_f16_f16_f16_f16_mnnm_instance(
std::vector<std::unique_ptr<
DeviceBatchedContractionMultipleD<1,
2,
3,
1,
F16,
F16,
F16_Tuple,
F16,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>>>& instances);
// Contraction + add
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedContractionMultipleD<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>>
{
using DeviceOp =
DeviceBatchedContractionMultipleD<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::half_t> &&
is_same_v<DDataType, ck::half_t> && is_same_v<EDataType, ck::half_t>)
{
if constexpr(NumDimG == 1 && NumDimM == 2 && NumDimN == 3 && NumDimK == 1)
{
add_device_batched_contraction_bias_permute_m2_n3_k1_xdl_c_shuffle_f16_f16_f16_f16_mnnm_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_infer_rank_4_f16_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F16, F32, F32, F16, F16>,
ck::Tuple<F16>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// FP32
void add_device_batchnorm_infer_rank_4_f32_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F32, F32, F32, F32, F32>,
ck::Tuple<F32>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// BF16
void add_device_batchnorm_infer_rank_4_bf16_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<BF16, F32, F32, BF16, BF16>,
ck::Tuple<BF16>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// FP64
void add_device_batchnorm_infer_rank_4_f64_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F64, F64, F64, F64, F64>,
ck::Tuple<F64>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
template <typename XDataType,
typename YDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
index_t Rank>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
ck::tensor_operation::element_wise::NormalizeInInfer,
Rank>>
{
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
ck::tensor_operation::element_wise::NormalizeInInfer,
Rank>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<ScaleDataType, F16> && is_same_v<BiasDataType, F16> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<ScaleDataType, F32> && is_same_v<BiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<YDataType, BF16> &&
is_same_v<ScaleDataType, BF16> && is_same_v<BiasDataType, BF16> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<YDataType, F64> &&
is_same_v<ScaleDataType, F64> && is_same_v<BiasDataType, F64> &&
is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
......@@ -18,11 +18,8 @@ namespace device {
namespace instance {
using Normalize = ck::tensor_operation::element_wise::Normalize;
using DeviceNormalizeFromMeanMeanSquarePtr = ck::tensor_operation::device::DeviceElementwiseBasePtr<
Tuple<half_t, float, float, half_t, half_t>,
Tuple<half_t>,
Normalize,
2>;
using DeviceNormalizeFromMeanMeanSquarePtr = ck::tensor_operation::device::
DeviceElementwisePtr<Tuple<half_t, float, float, half_t, half_t>, Tuple<half_t>, Normalize, 2>;
void add_device_normalize_from_mean_squaremean_f16_f32_f32_f16_f16_instances(
std::vector<DeviceNormalizeFromMeanMeanSquarePtr>& instances);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddMultiply>>>&);
void add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddMultiply>>>&);
void add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddMultiply>>>&);
void add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
AddMultiply>>>&);
// GEMM + Add + Multiply
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddMultiply>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddMultiply>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<D1DataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_add_multiply_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -76,8 +76,16 @@ template <typename InDataType,
bool PropagateNan,
bool OutputIndex>
void add_device_reduce_instance_blockwise(
std::vector<DeviceReducePtr<Rank, NumReduceDim, InElementwiseOp, AccElementwiseOp>>&
device_op_instances)
std::vector<DeviceReducePtr<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOp,
AccElementwiseOp,
PropagateNan,
OutputIndex>>& device_op_instances)
{
static_for<0, std::tuple_size<reduce_configuration_1_instances_blockwise>::value, 1>{}(
[&](auto i) {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment