Commit f0298581 authored by Harisankar Sadasivan's avatar Harisankar Sadasivan
Browse files

cmakelist changes to exclude navi cards for gemv splitk & merge changes from dev

parent 675aa69e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_f16_instances<3,
GNDHWC,
GKZYXC,
GNDHWK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_f16_instances<3,
GNDHWC,
GKZYXC,
GNDHWK,
ConvBwdWeightDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_i8_instances<3,
GNDHWC,
GKZYXC,
GNDHWK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_i8_instances<3,
GNDHWC,
GKZYXC,
GNDHWK,
ConvBwdWeightDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_i8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_wmma_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_wmma_i8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_grouped_conv3d_fwd_instance
set(GROUPED_CONV3D_FWD
xdl/device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_fp8_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_1x1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_1x1s1p0_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instance.cpp
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instance.cpp
)
wmma/device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instance.cpp)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_CONV3D_FWD
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_fp8_instance.cpp)
endif()
add_instance_library(device_grouped_conv3d_fwd_instance ${GROUPED_CONV3D_FWD})
set(GROUPED_GEMM_FIXED_NK_INSTANCES)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp)
endif()
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_kn_mn_instance.cpp)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_nk_mn_instance.cpp)
endif()
if((DTYPES MATCHES "int8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp)
endif()
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp)
add_instance_library(device_grouped_gemm_fixed_nk_instance ${GROUPED_GEMM_FIXED_NK_INSTANCES})
......@@ -147,7 +147,9 @@ GB/s: 127.947
# arg1: tensor operation (grouped_conv_bwd_weight: Grouped Convolution Backward Weight)
# arg2: data type (0: Input fp32, Weight fp32, Output fp32
# 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight fp32, Output bf16)
# 2: Input bf16, Weight fp32, Output bf16
# 3: Input fp16, Weight fp16, Output fp16, Gemm bf8@fp8
# 4: Input int8, Weight int8, Output int8)
# arg3: tensor layout (0: Input[G, N, C, Hi, Wi], Weight[G, K, C, Y, X], Output[G, N, K, Ho, Wo]
# 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]
# 2: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K]
......@@ -167,7 +169,7 @@ GB/s: 127.947
# SplitK
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx SplitK
./bin/ckProfiler grouped_conv_bwd_weight 1 0 1 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1
./bin/ckProfiler grouped_conv_bwd_weight 1 1 0 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1
```
......
......@@ -30,7 +30,8 @@ template <typename ADataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
typename CLayout,
typename ComputeType = CDataType>
bool profile_gemm_splitk_impl(int do_verification,
int init_method,
bool do_log,
......@@ -103,7 +104,8 @@ bool profile_gemm_splitk_impl(int do_verification,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
CElementOp,
ComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -120,7 +122,8 @@ bool profile_gemm_splitk_impl(int do_verification,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
CElementOp,
ComputeType>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......
......@@ -25,8 +25,6 @@ set(PROFILER_SOURCES
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
)
......@@ -46,6 +44,11 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif()
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif()
set(PROFILER_EXECUTABLE ckProfiler)
add_executable(${PROFILER_EXECUTABLE} ${PROFILER_SOURCES})
......@@ -76,8 +79,6 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
......@@ -85,9 +86,18 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_d
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif()
if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment