Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
f0224f2a
Commit
f0224f2a
authored
Nov 29, 2022
by
letaoqin
Browse files
Merge branch 'develop' into dl_conv_multiple_d
parents
befc2638
0e9c88ce
Changes
271
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
822 additions
and
308 deletions
+822
-308
example/22_cgemm/cgemm_xdl_common.hpp
example/22_cgemm/cgemm_xdl_common.hpp
+13
-12
example/23_softmax/softmax_blockwise.cpp
example/23_softmax/softmax_blockwise.cpp
+1
-1
example/24_batched_gemm/run_batched_gemm_example.inc
example/24_batched_gemm/run_batched_gemm_example.inc
+6
-6
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
+14
-33
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
+14
-33
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
+14
-31
example/26_contraction/contraction_scale_xdl_fp32.cpp
example/26_contraction/contraction_scale_xdl_fp32.cpp
+13
-28
example/27_layernorm/layernorm_blockwise.cpp
example/27_layernorm/layernorm_blockwise.cpp
+6
-6
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
+17
-34
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
+16
-37
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+22
-0
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+30
-0
example/30_grouped_conv_fwd_multiple_d/common.hpp
example/30_grouped_conv_fwd_multiple_d/common.hpp
+355
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
+31
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
...grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
+24
-0
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+142
-87
No files found.
example/22_cgemm/cgemm_xdl_common.hpp
View file @
f0224f2a
...
@@ -11,6 +11,7 @@
...
@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -62,15 +63,15 @@ bool run_cgemm_xdl(ck::index_t M,
...
@@ -62,15 +63,15 @@ bool run_cgemm_xdl(ck::index_t M,
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -219,14 +220,14 @@ bool run_cgemm_xdl(ck::index_t M,
...
@@ -219,14 +220,14 @@ bool run_cgemm_xdl(ck::index_t M,
const
Tensor
<
CDataType
>
c_m_n_real_device_result_converted
(
c_m_n_real_device_result
);
const
Tensor
<
CDataType
>
c_m_n_real_device_result_converted
(
c_m_n_real_device_result
);
const
Tensor
<
CDataType
>
c_m_n_imag_device_result_converted
(
c_m_n_imag_device_result
);
const
Tensor
<
CDataType
>
c_m_n_imag_device_result_converted
(
c_m_n_imag_device_result
);
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result_converted
.
mData
,
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result_converted
,
c_m_n_real_host_result
.
mData
,
c_m_n_real_host_result
,
"Verification error: incorrect results in real part!"
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-2
f
,
1e-1
f
);
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result_converted
.
mData
,
c_m_n_imag_device_result_converted
,
c_m_n_imag_host_result
.
mData
,
c_m_n_imag_host_result
,
"Verification error: incorrect results in imaginary part!"
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-2
f
,
1e-1
f
);
1e-1
f
);
...
@@ -234,14 +235,14 @@ bool run_cgemm_xdl(ck::index_t M,
...
@@ -234,14 +235,14 @@ bool run_cgemm_xdl(ck::index_t M,
else
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
{
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
.
mData
,
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
,
c_m_n_real_host_result
.
mData
,
c_m_n_real_host_result
,
"Verification error: incorrect results in real part!"
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-2
f
,
1e-1
f
);
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
.
mData
,
c_m_n_imag_device_result
,
c_m_n_imag_host_result
.
mData
,
c_m_n_imag_host_result
,
"Verification error: incorrect results in imaginary part!"
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-2
f
,
1e-1
f
);
1e-1
f
);
...
...
example/23_softmax/softmax_blockwise.cpp
View file @
f0224f2a
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
};
};
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
});
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
});
...
...
example/24_batched_gemm/run_batched_gemm_example.inc
View file @
f0224f2a
...
@@ -55,15 +55,15 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
...
@@ -55,15 +55,15 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
std
::
size_t
stride
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
}
};
};
...
@@ -174,11 +174,11 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
...
@@ -174,11 +174,11 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
#ifdef BUILD_INT4_EXAMPLE
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
EDataType
>
e_device_result_converted
(
e_g_m_n_device_result
);
const
Tensor
<
EDataType
>
e_device_result_converted
(
e_g_m_n_device_result
);
pass
&=
ck
::
utils
::
check_err
(
e_device_result_converted
.
mData
,
e_g_m_n_host_result
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
e_device_result_converted
,
e_g_m_n_host_result
);
#else
#else
pass
=
ck
::
utils
::
check_err
(
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_device_result
.
mData
,
e_g_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
e_g_m_n_device_result
,
e_g_m_n_host_result
,
"Error: Incorrect results c"
);
#endif
#endif
}
}
...
...
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
View file @
f0224f2a
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
exit
(
0
);
exit
(
0
);
}
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
...
@@ -327,20 +318,14 @@ int main(int argc, char* argv[])
...
@@ -327,20 +318,14 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
std
::
size_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
std
::
size_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
std
::
size_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
...
@@ -357,9 +342,7 @@ int main(int argc, char* argv[])
...
@@ -357,9 +342,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G1_M2_N3_K1
<
NumDimM
,
using
ReferenceOpInstance
=
ReferenceContraction_G1_M2_N3_K1
<
NumDimM
,
NumDimN
,
NumDimN
,
...
@@ -407,9 +390,7 @@ int main(int argc, char* argv[])
...
@@ -407,9 +390,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
View file @
f0224f2a
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
exit
(
0
);
exit
(
0
);
}
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
...
@@ -327,20 +318,14 @@ int main(int argc, char* argv[])
...
@@ -327,20 +318,14 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
ck
::
index_t
M
=
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
...
@@ -357,9 +342,7 @@ int main(int argc, char* argv[])
...
@@ -357,9 +342,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G1_M3_N2_K1
<
NumDimG
,
using
ReferenceOpInstance
=
ReferenceContraction_G1_M3_N2_K1
<
NumDimG
,
NumDimM
,
NumDimM
,
...
@@ -408,9 +391,7 @@ int main(int argc, char* argv[])
...
@@ -408,9 +391,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
View file @
f0224f2a
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -288,21 +289,11 @@ int main(int argc, char* argv[])
...
@@ -288,21 +289,11 @@ int main(int argc, char* argv[])
exit
(
0
);
exit
(
0
);
}
}
Tensor
<
ADataType
>
a_ms_ks
(
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
EDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_lengths
.
begin
(),
b_ns_ks_lengths
.
end
()),
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_strides
.
begin
(),
b_ns_ks_strides
.
end
()));
Tensor
<
EDataType
>
d_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_lengths
.
begin
(),
d_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_strides
.
begin
(),
d_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
...
@@ -368,20 +359,14 @@ int main(int argc, char* argv[])
...
@@ -368,20 +359,14 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
ck
::
index_t
M
=
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
...
@@ -398,9 +383,7 @@ int main(int argc, char* argv[])
...
@@ -398,9 +383,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimN
,
...
@@ -437,7 +420,7 @@ int main(int argc, char* argv[])
...
@@ -437,7 +420,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
.
mData
,
e_ms_ns_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/26_contraction/contraction_scale_xdl_fp32.cpp
View file @
f0224f2a
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -277,18 +278,10 @@ int main(int argc, char* argv[])
...
@@ -277,18 +278,10 @@ int main(int argc, char* argv[])
exit
(
0
);
exit
(
0
);
}
}
Tensor
<
ADataType
>
a_ms_ks
(
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_lengths
.
begin
(),
b_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_strides
.
begin
(),
b_ns_ks_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
...
@@ -349,20 +342,14 @@ int main(int argc, char* argv[])
...
@@ -349,20 +342,14 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
ck
::
index_t
M
=
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
...
@@ -379,9 +366,7 @@ int main(int argc, char* argv[])
...
@@ -379,9 +366,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimN
,
...
@@ -417,7 +402,7 @@ int main(int argc, char* argv[])
...
@@ -417,7 +402,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
.
mData
,
e_ms_ns_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/27_layernorm/layernorm_blockwise.cpp
View file @
f0224f2a
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
...
@@ -60,13 +61,13 @@ int main()
...
@@ -60,13 +61,13 @@ int main()
ck
::
index_t
Stride
=
N
;
ck
::
index_t
Stride
=
N
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
return
HostTensorDescriptor
({
len
},
{
stride
});
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
using
namespace
ck
::
literals
;
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
};
};
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
...
@@ -132,8 +133,7 @@ int main()
...
@@ -132,8 +133,7 @@ int main()
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
}
}
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
View file @
f0224f2a
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -297,33 +298,19 @@ int main(int argc, char* argv[])
...
@@ -297,33 +298,19 @@ int main(int argc, char* argv[])
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
ADataType
>
a_ms_ks
(
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_lengths
.
begin
(),
b_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_strides
.
begin
(),
b_ns_ks_strides
.
end
()));
ck
::
index_t
M_
=
Tensor
<
DDataType
>
d_ms_ns
(
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_lengths
.
begin
(),
d_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_strides
.
begin
(),
d_ms_ns_strides
.
end
()));
ck
::
index_t
N_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
ck
::
index_t
K_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
M_
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N_
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K_
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
a_tensors
.
push_back
(
a_ms_ks
);
a_tensors
.
push_back
(
a_ms_ks
);
b_tensors
.
push_back
(
b_ns_ks
);
b_tensors
.
push_back
(
b_ns_ks
);
...
@@ -423,13 +410,9 @@ int main(int argc, char* argv[])
...
@@ -423,13 +410,9 @@ int main(int argc, char* argv[])
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
EDataType
>
c_ms_ns_host_result
(
Tensor
<
EDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
...
@@ -475,7 +458,7 @@ int main(int argc, char* argv[])
...
@@ -475,7 +458,7 @@ int main(int argc, char* argv[])
}
}
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
]
.
mData
,
e_ms_ns_host_result
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
],
e_ms_ns_host_result
);
}
}
}
}
...
...
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
View file @
f0224f2a
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
exit
(
0
);
exit
(
0
);
}
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
...
@@ -327,25 +318,17 @@ int main(int argc, char* argv[])
...
@@ -327,25 +318,17 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
ck
::
index_t
G
=
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
NumDimG
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
...
@@ -362,9 +345,7 @@ int main(int argc, char* argv[])
...
@@ -362,9 +345,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimM
,
...
@@ -409,9 +390,7 @@ int main(int argc, char* argv[])
...
@@ -409,9 +390,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
0 → 100644
View file @
f0224f2a
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
example/30_grouped_conv_fwd_multiple_d/README.md
0 → 100644
View file @
f0224f2a
Command
```
bash
arg1: verification
(
0
=
no,
1
=
yes
)
arg2: initialization
(
0
=
no init,
1
=
integer value,
2
=
decimal value
)
arg3:
time
kernel
(
0
=
no,
1
=
yes
)
Following arguments
(
depending on number of spatial dims
)
:
Number of spatial dimensions
(
1
=
Conv1d,
2
=
Conv2d,
3
=
Conv3d
)
G, N, K, C,
<filter spatial dimensions>,
(
ie Y, X
for
2D
)
<input image spatial dimensions>,
(
ie Hi, Wi
for
2D
)
<strides>,
(
ie Sy, Sx
for
2D
)
<dilations>,
(
ie Dy, Dx
for
2D
)
<left padding>,
(
ie LeftPy, LeftPx
for
2D
)
<right padding>,
(
ie RightPy, RightPx
for
2D
)
./bin/example_grouped_conv_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {192, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default>
```
example/30_grouped_conv
nd
_fwd_
bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.c
pp
→
example/30_grouped_conv_fwd_
multiple_d/common.h
pp
View file @
f0224f2a
This diff is collapsed.
Click to expand it.
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
BF16
;
using
WeiKernelDataType
=
BF16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
BF16
;
using
ResidualKernelDataType
=
BF16
;
using
OutKernelDataType
=
BF16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
BiasKernelDataType
=
FP16
;
using
ResidualKernelDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP32
;
using
WeiKernelDataType
=
FP32
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
FP32
;
using
ResidualKernelDataType
=
FP32
;
using
OutKernelDataType
=
FP32
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
I8
;
using
WeiKernelDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I8
;
using
BiasKernelDataType
=
I8
;
using
ResidualKernelDataType
=
I8
;
using
OutKernelDataType
=
I8
;
// tensor data types
using
InUserDataType
=
I4
;
using
WeiUserDataType
=
I4
;
using
OutUserDataType
=
I4
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#define BUILD_INT4_EXAMPLE
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
I8
;
using
WeiKernelDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I8
;
using
BiasKernelDataType
=
I8
;
using
ResidualKernelDataType
=
I8
;
using
OutKernelDataType
=
I8
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
0 → 100644
View file @
f0224f2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
#include "run_grouped_conv_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_example
(
argc
,
argv
);
}
example/30_grouped_conv
nd
_fwd_
bias_relu_add/
grouped_conv
nd
_fwd_bias_relu_add_
common.hpp
→
example/30_grouped_conv_fwd_
multiple_d/run_
grouped_conv_fwd_bias_relu_add_
example.inc
View file @
f0224f2a
This diff is collapsed.
Click to expand it.
Prev
1
2
3
4
5
6
7
8
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment