Commit f0224f2a authored by letaoqin's avatar letaoqin
Browse files

Merge branch 'develop' into dl_conv_multiple_d

parents befc2638 0e9c88ce
......@@ -44,8 +44,8 @@ struct ReferenceGemmLayernorm : public device::BaseOperator
size_t M = acc.mDesc.GetLengths()[0];
size_t N = acc.mDesc.GetLengths()[1];
Tensor<ComputeDataType> avg_acc_sq(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> avg_acc(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> avg_acc_sq({M});
Tensor<ComputeDataType> avg_acc({M});
Tensor<ComputeDataType> acc_layernorm(acc);
// reduce N dim
......
......@@ -92,9 +92,10 @@ struct ReferenceLayernorm : public device::BaseOperator
{
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.acc_elementwise_op_(y_val, y_val);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
}
}
......
......@@ -86,8 +86,8 @@ struct ReferenceSoftmax : public device::BaseOperator
};
arg.in_.ForEach([&](auto& self, auto idx) {
reduce_max(to_sm_scalar_idx(idx)) = std::max(reduce_max(to_sm_scalar_idx(idx)),
static_cast<AccDataType>(self(idx)));
reduce_max(to_sm_scalar_idx(idx)) = std::max(
reduce_max(to_sm_scalar_idx(idx)), ck::type_convert<AccDataType>(self(idx)));
});
// LogRangeAsType<float>(std::cout << "reduce_max: ", reduce_max.mData, ",") <<
......@@ -96,7 +96,7 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> in_stable(arg.in_.mDesc);
in_stable.ForEach([&](auto& self, auto idx) {
// numerator = exp(x - max(x))
self(idx) = std::exp(static_cast<AccDataType>(arg.in_(idx)) -
self(idx) = std::exp(ck::type_convert<AccDataType>(arg.in_(idx)) -
reduce_max(to_sm_scalar_idx(idx)));
});
......@@ -111,8 +111,10 @@ struct ReferenceSoftmax : public device::BaseOperator
// std::endl;
arg.out_.ForEach([&](auto& self, auto idx) {
self(idx) = arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) +
arg.beta_ * self(idx);
AccDataType temp_result =
arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) +
arg.beta_ * self(idx);
self(idx) = ck::type_convert<OutDataType>(temp_result);
});
// LogRangeAsType<float>(std::cout << "out: ", arg.out_.mData, ",") << std::endl;
......
......@@ -87,6 +87,8 @@ using Relu = ck::tensor_operation::element_wise::Relu;
using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......@@ -95,7 +97,7 @@ template <typename Activation>
using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename DeviceOp>
template <typename DeviceOp, typename Tag = void>
struct DeviceOperationInstanceFactory;
} // namespace instance
......
......@@ -59,6 +59,48 @@ void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_g
MaskingSpecialization::MaskDisabled>>>&
instances);
void add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
template <typename ADataType,
typename B0DataType,
typename B1DataType,
......@@ -119,6 +161,20 @@ struct DeviceOperationInstanceFactory<
op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, BF16> && is_same_v<B0DataType, BF16> &&
is_same_v<B1DataType, BF16> && is_same_v<CDataType, BF16>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_forward_rank_4_3_f16_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F16, F16, F32, F16, F16, F32, PassThrough, 4, 3>>>&);
// FP32
void add_device_batchnorm_forward_rank_4_3_f32_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F32, F32, F32, F32, F32, F32, PassThrough, 4, 3>>>&);
// BF16
void add_device_batchnorm_forward_rank_4_3_bf16_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<BF16, BF16, F32, BF16, BF16, F32, PassThrough, 4, 3>>>&);
// FP64
void add_device_batchnorm_forward_rank_4_3_f64_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F64, F64, F64, F64, F64, F64, PassThrough, 4, 3>>>&);
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, F16> &&
is_same_v<BiasDataType, F16> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, F32> &&
is_same_v<BiasDataType, F32> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<YDataType, BF16> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, BF16> &&
is_same_v<BiasDataType, BF16> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<YDataType, F64> &&
is_same_v<AccDataType, F64> && is_same_v<ScaleDataType, F64> &&
is_same_v<BiasDataType, F64> && is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -101,6 +101,42 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
PassThrough,
PassThrough>>>& instances);
// conv2d dl
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward data
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
......@@ -216,11 +252,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
......@@ -232,6 +270,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
// GEMM + Add + FastGelu
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddFastGelu>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddFastGelu>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>&);
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>&);
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>&);
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>&);
// GEMM + FastGelu
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
FastGelu>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
FastGelu>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -5,7 +5,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
......@@ -17,46 +17,54 @@ namespace instance {
// conv2d backward data
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdData<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiLayout,
typename InLayout,
typename OutDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdData<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
typename InDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD<
NumDimSpatial,
OutLayout,
WeiLayout,
Empty_Tuple,
InLayout,
OutDataType,
WeiDataType,
Empty_Tuple,
InDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
using DeviceOp =
DeviceGroupedConvBwdDataMultipleD<NumDimSpatial,
OutLayout,
WeiLayout,
Empty_Tuple,
InLayout,
OutDataType,
WeiDataType,
Empty_Tuple,
InDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, GNWC> &&
is_same_v<WeiLayout, GKXC> && is_same_v<OutLayout, GNWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -3,11 +3,11 @@
#pragma once
#include <cstdlib>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwd<2,
GNHWC,
GKYXC,
GNHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwd<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <iterator>
#include <type_traits>
#include <utility>
namespace ck {
namespace ranges {
template <typename InputRange, typename OutputIterator>
auto copy(InputRange&& range, OutputIterator iter)
-> decltype(std::copy(std::begin(std::forward<InputRange>(range)),
std::end(std::forward<InputRange>(range)),
iter))
{
return std::copy(std::begin(std::forward<InputRange>(range)),
std::end(std::forward<InputRange>(range)),
iter);
}
template <typename T, typename OutputRange>
auto fill(OutputRange&& range, const T& init)
-> std::void_t<decltype(std::fill(std::begin(std::forward<OutputRange>(range)),
std::end(std::forward<OutputRange>(range)),
init))>
{
std::fill(std::begin(std::forward<OutputRange>(range)),
std::end(std::forward<OutputRange>(range)),
init);
}
template <typename InputRange, typename OutputIterator, typename UnaryOperation>
auto transform(InputRange&& range, OutputIterator iter, UnaryOperation unary_op)
-> decltype(std::transform(std::begin(range), std::end(range), iter, unary_op))
{
return std::transform(std::begin(range), std::end(range), iter, unary_op);
}
} // namespace ranges
} // namespace ck
......@@ -15,18 +15,22 @@
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/span.hpp"
#include "ck/utility/type.hpp"
#include "ck/host_utility/io.hpp"
#include "ck/library/utility/ranges.hpp"
namespace ck {
namespace utils {
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value && !std::is_same<T, half_t>::value,
bool>::type
check_err(const std::vector<T>& out,
const std::vector<T>& ref,
template <typename Range, typename RefRange>
typename std::enable_if<
std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_floating_point_v<ranges::range_value_t<Range>> &&
!std::is_same_v<ranges::range_value_t<Range>, half_t>,
bool>::type
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 1e-5,
double atol = 3e-6)
......@@ -44,15 +48,17 @@ check_err(const std::vector<T>& out,
double max_err = std::numeric_limits<double>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
err = std::abs(out[i] - ref[i]);
if(err > atol + rtol * std::abs(ref[i]) || !std::isfinite(out[i]) || !std::isfinite(ref[i]))
const double o = *std::next(std::begin(out), i);
const double r = *std::next(std::begin(ref), i);
err = std::abs(o - r);
if(err > atol + rtol * std::abs(r) || !std::isfinite(o) || !std::isfinite(r))
{
max_err = err > max_err ? err : max_err;
err_count++;
if(err_count < 5)
{
std::cerr << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << out[i] << " != " << ref[i] << std::endl;
<< "] != ref[" << i << "]: " << o << " != " << r << std::endl;
}
res = false;
}
......@@ -64,10 +70,13 @@ check_err(const std::vector<T>& out,
return res;
}
template <typename T>
typename std::enable_if<std::is_same<T, bhalf_t>::value, bool>::type
check_err(const std::vector<T>& out,
const std::vector<T>& ref,
template <typename Range, typename RefRange>
typename std::enable_if<
std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, bhalf_t>,
bool>::type
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 1e-3,
double atol = 1e-3)
......@@ -86,9 +95,9 @@ check_err(const std::vector<T>& out,
double max_err = std::numeric_limits<float>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
double o = type_convert<float>(out[i]);
double r = type_convert<float>(ref[i]);
err = std::abs(o - r);
const double o = type_convert<float>(*std::next(std::begin(out), i));
const double r = type_convert<float>(*std::next(std::begin(ref), i));
err = std::abs(o - r);
if(err > atol + rtol * std::abs(r) || !std::isfinite(o) || !std::isfinite(r))
{
max_err = err > max_err ? err : max_err;
......@@ -108,10 +117,13 @@ check_err(const std::vector<T>& out,
return res;
}
template <typename T>
typename std::enable_if<std::is_same_v<T, half_t>, bool>::type
check_err(span<const T> out,
span<const T> ref,
template <typename Range, typename RefRange>
typename std::enable_if<
std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, half_t>,
bool>::type
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 1e-3,
double atol = 1e-3)
......@@ -126,12 +138,12 @@ check_err(span<const T> out,
bool res{true};
int err_count = 0;
double err = 0;
double max_err = std::numeric_limits<T>::min();
double max_err = std::numeric_limits<ranges::range_value_t<Range>>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
double o = type_convert<float>(out[i]);
double r = type_convert<float>(ref[i]);
err = std::abs(o - r);
const double o = type_convert<float>(*std::next(std::begin(out), i));
const double r = type_convert<float>(*std::next(std::begin(ref), i));
err = std::abs(o - r);
if(err > atol + rtol * std::abs(r) || !std::isfinite(o) || !std::isfinite(r))
{
max_err = err > max_err ? err : max_err;
......@@ -151,26 +163,17 @@ check_err(span<const T> out,
return res;
}
template <typename T>
typename std::enable_if<std::is_same<T, half_t>::value, bool>::type
check_err(const std::vector<T>& out,
const std::vector<T>& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 1e-3,
double atol = 1e-3)
{
return check_err(span<const T>{out}, span<const T>{ref}, msg, rtol, atol);
}
template <typename T>
std::enable_if_t<(std::is_integral_v<T> && !std::is_same_v<T, bhalf_t>)
template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_integral_v<ranges::range_value_t<Range>> &&
!std::is_same_v<ranges::range_value_t<Range>, bhalf_t>)
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
|| std::is_same_v<T, int4_t>
|| std::is_same_v<ranges::range_value_t<Range>, int4_t>
#endif
,
bool>
check_err(const std::vector<T>& out,
const std::vector<T>& ref,
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double = 0,
double atol = 0)
......@@ -188,9 +191,9 @@ check_err(const std::vector<T>& out,
int64_t max_err = std::numeric_limits<int64_t>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
int64_t o = out[i];
int64_t r = ref[i];
err = std::abs(o - r);
const int64_t o = *std::next(std::begin(out), i);
const int64_t r = *std::next(std::begin(ref), i);
err = std::abs(o - r);
if(err > atol)
{
......
......@@ -10,6 +10,8 @@
#include "ck/ck.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck {
namespace utils {
namespace conv {
......@@ -55,10 +57,8 @@ struct ConvParam
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) *
(G_ * N_ * C_ *
std::accumulate(std::begin(input_spatial_lengths_),
std::begin(input_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
ck::accumulate_n<std::size_t>(
std::begin(input_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
}
template <typename WeiDataType>
......@@ -67,10 +67,8 @@ struct ConvParam
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) *
(G_ * K_ * C_ *
std::accumulate(std::begin(filter_spatial_lengths_),
std::begin(filter_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
ck::accumulate_n<std::size_t>(
std::begin(filter_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
}
template <typename OutDataType>
......
......@@ -30,9 +30,10 @@ struct FillUniformDistribution
}
template <typename ForwardRange>
auto operator()(ForwardRange&& range) -> std::void_t<decltype(
std::declval<FillUniformDistribution>()(std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range))))>
auto operator()(ForwardRange&& range) const
-> std::void_t<decltype(std::declval<const FillUniformDistribution&>()(
std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range))))>
{
(*this)(std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range)));
......@@ -72,6 +73,16 @@ struct FillUniformDistributionIntegerValue
std::generate(
first, last, [&dis, &gen]() { return ck::type_convert<T>(std::round(dis(gen))); });
}
template <typename ForwardRange>
auto operator()(ForwardRange&& range) const
-> std::void_t<decltype(std::declval<const FillUniformDistributionIntegerValue&>()(
std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range))))>
{
(*this)(std::begin(std::forward<ForwardRange>(range)),
std::end(std::forward<ForwardRange>(range)));
}
};
template <typename T>
......
......@@ -4,9 +4,11 @@
#pragma once
#include <vector>
#include <array>
#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include "ck/ck.hpp"
......@@ -72,5 +74,63 @@ static inline std::vector<T> getTypeValuesFromString(const char* cstr_values)
return (values);
}
template <int NDim>
static inline std::vector<std::array<index_t, NDim>>
get_index_set(const std::array<index_t, NDim>& dim_lengths)
{
static_assert(NDim >= 1, "NDim >= 1 is required to use this function!");
if constexpr(NDim == 1)
{
std::vector<std::array<index_t, NDim>> index_set;
for(int i = 0; i < dim_lengths[0]; i++)
{
std::array<index_t, 1> index{i};
index_set.push_back(index);
};
return index_set;
}
else
{
std::vector<std::array<index_t, NDim>> index_set;
std::array<index_t, NDim - 1> partial_dim_lengths;
std::copy(dim_lengths.begin() + 1, dim_lengths.end(), partial_dim_lengths.begin());
std::vector<std::array<index_t, NDim - 1>> partial_index_set;
partial_index_set = get_index_set<NDim - 1>(partial_dim_lengths);
for(index_t i = 0; i < dim_lengths[0]; i++)
for(const auto& partial_index : partial_index_set)
{
std::array<index_t, NDim> index;
index[0] = i;
std::copy(partial_index.begin(), partial_index.end(), index.begin() + 1);
index_set.push_back(index);
};
return index_set;
};
};
template <int NDim>
static inline size_t get_offset_from_index(const std::array<index_t, NDim>& strides,
const std::array<index_t, NDim>& index)
{
size_t offset = 0;
for(int i = 0; i < NDim; i++)
offset += index[i] * strides[i];
return (offset);
};
} // namespace host_common
} // namespace ck
......@@ -14,6 +14,9 @@
#include "ck/utility/data_type.hpp"
#include "ck/utility/span.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/ranges.hpp"
template <typename Range>
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
{
......@@ -84,10 +87,10 @@ struct HostTensorDescriptor
this->CalculateStrides();
}
template <typename Range,
template <typename Lengths,
typename = std::enable_if_t<
std::is_convertible_v<decltype(*std::begin(std::declval<Range>())), std::size_t>>>
HostTensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
std::is_convertible_v<ck::ranges::range_value_t<Lengths>, std::size_t>>>
HostTensorDescriptor(const Lengths& lens) : mLens(lens.begin(), lens.end())
{
this->CalculateStrides();
}
......@@ -102,13 +105,12 @@ struct HostTensorDescriptor
{
}
template <
typename Range1,
typename Range2,
typename = std::enable_if_t<
std::is_convertible_v<decltype(*std::begin(std::declval<Range1>())), std::size_t> &&
std::is_convertible_v<decltype(*std::begin(std::declval<Range2>())), std::size_t>>>
HostTensorDescriptor(const Range1& lens, const Range2& strides)
template <typename Lengths,
typename Strides,
typename = std::enable_if_t<
std::is_convertible_v<ck::ranges::range_value_t<Lengths>, std::size_t> &&
std::is_convertible_v<ck::ranges::range_value_t<Strides>, std::size_t>>>
HostTensorDescriptor(const Lengths& lens, const Strides& strides)
: mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
{
}
......@@ -244,14 +246,20 @@ struct Tensor
{
}
template <typename X>
Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
template <typename X, typename Y>
Tensor(std::initializer_list<X> lens, std::initializer_list<Y> strides)
: mDesc(lens, strides), mData(mDesc.GetElementSpaceSize())
{
}
template <typename X, typename Y>
Tensor(std::vector<X> lens, std::vector<Y> strides)
: mDesc(lens, strides), mData(mDesc.GetElementSpaceSize())
template <typename Lengths>
Tensor(const Lengths& lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
{
}
template <typename Lengths, typename Strides>
Tensor(const Lengths& lens, const Strides& strides)
: mDesc(lens, strides), mData(GetElementSpaceSize())
{
}
......@@ -261,10 +269,10 @@ struct Tensor
Tensor<OutT> CopyAsType() const
{
Tensor<OutT> ret(mDesc);
for(size_t i = 0; i < mData.size(); i++)
{
ret.mData[i] = ck::type_convert<OutT>(mData[i]);
}
ck::ranges::transform(
mData, ret.mData.begin(), [](auto value) { return ck::type_convert<OutT>(value); });
return ret;
}
......@@ -294,13 +302,7 @@ struct Tensor
std::size_t GetElementSpaceSizeInBytes() const { return sizeof(T) * GetElementSpaceSize(); }
void SetZero()
{
for(auto& v : mData)
{
v = T{0};
}
}
void SetZero() { ck::ranges::fill<T>(mData, 0); }
template <typename F>
void ForEach_impl(F&& f, std::vector<size_t>& idx, size_t rank)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment