Commit ef2d6713 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl

parents 1639689e a1e344b1
......@@ -37,7 +37,8 @@ __global__ void
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
......@@ -703,7 +704,8 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx940"))
{
return false;
}
......
......@@ -130,7 +130,8 @@ __global__ void
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......
......@@ -78,7 +78,8 @@ __global__ void
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -155,7 +155,8 @@ __global__ void
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......@@ -810,7 +811,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
return false;
}
}
else if(get_device_name() == "gfx90a")
else if(get_device_name() == "gfx90a" || get_device_name() == "gfx940")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
......
......@@ -135,7 +135,8 @@ __global__ void
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -684,7 +685,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
return false;
}
}
else if(get_device_name() == "gfx90a")
else if(get_device_name() == "gfx90a" || get_device_name() == "gfx940")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
......
......@@ -38,7 +38,8 @@ __global__ void
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation c_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
......
......@@ -34,7 +34,8 @@ __global__ void
kernel_grouped_gemm_xdl_splitk(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
const index_t group_count)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
......
......@@ -10,8 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_selector.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -20,6 +19,10 @@ namespace tensor_operation {
namespace device {
// Y = Normalization(X, Beta, Gamma)
// M: Invarient length
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -68,7 +71,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
static auto MakeSrc2dDescriptor(const std::vector<index_t>& inLengths,
const std::vector<index_t>& inStrides,
int blkGroupSize,
int numBlockTileIteration)
{
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
......@@ -117,10 +119,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const int reduceSizePerBlock = K_BlockTileSize * numBlockTileIteration;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K = reduceSizePerBlock * blkGroupSize - reduceLength;
const auto inPad_K = K_BlockTileSize * numBlockTileIteration - reduceLength;
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
......@@ -132,7 +133,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
return (in_grid_desc_m_k_padded);
};
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1));
struct Argument : public BaseArgument
{
......@@ -162,26 +163,22 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
gammaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(gammaStrides, reduceDims);
betaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(betaStrides, reduceDims);
long_index_t invariant_total_length;
long_index_t reduce_total_length;
long_index_t invariant_length;
long_index_t reduce_length;
std::tie(invariant_total_length, reduce_total_length) =
std::tie(invariant_length, reduce_length) =
get_2d_lengths<Rank, NumReduceDim>(Lengths_);
blkGroupSize_ = 1;
numBlockTileIteration_ = (reduce_total_length + K_BlockTileSize - 1) / K_BlockTileSize;
numBlockTileIteration_ = math::integer_divide_ceil(reduce_length, K_BlockTileSize);
gridSize_ = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize * blkGroupSize_;
gridSize_ = math::integer_divide_ceil(invariant_length, M_BlockTileSize);
x_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, xStrides_, blkGroupSize_, numBlockTileIteration_);
x_grid_desc_m_k_ = MakeSrc2dDescriptor(Lengths_, xStrides_, numBlockTileIteration_);
gamma_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, gammaStrides_, blkGroupSize_, numBlockTileIteration_);
MakeSrc2dDescriptor(Lengths_, gammaStrides_, numBlockTileIteration_);
beta_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, betaStrides_, blkGroupSize_, numBlockTileIteration_);
y_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, yStrides_, blkGroupSize_, numBlockTileIteration_);
MakeSrc2dDescriptor(Lengths_, betaStrides_, numBlockTileIteration_);
y_grid_desc_m_k_ = MakeSrc2dDescriptor(Lengths_, yStrides_, numBlockTileIteration_);
isSweeponce_ =
x_grid_desc_m_k_.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
......@@ -202,7 +199,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
YElementwiseOperation y_elementwise_op_;
int blkGroupSize_;
int numBlockTileIteration_;
size_t gridSize_;
......@@ -286,6 +282,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
if(p_arg_->invariant_lowest_length % XSrcVectorSize != 0)
return false;
if(p_arg_->invariant_lowest_length % YDstVectorSize != 0)
return false;
};
}
else
......@@ -295,12 +294,12 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
if(p_arg_->Lengths_[Rank - 1] % XSrcVectorSize != 0)
return false;
};
if(p_arg_->Lengths_[Rank - 1] % YDstVectorSize != 0)
{
return false;
}
if(p_arg_->Lengths_[Rank - 1] % YDstVectorSize != 0)
{
return false;
}
};
// if fastest dim is not reduced
if constexpr(GammaSrcVectorDim == 0)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_1st.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_2nd.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseWelford,
typename XDataType,
typename MeanVarDataType,
typename ComputeDataType,
typename XGridDesc_M_K,
typename MeanVarGridDesc_M_KBlock>
__global__ void
kernel_normalizationSplitK1st(const XGridDesc_M_K x_grid_desc_m_k,
const MeanVarGridDesc_M_KBlock mean_var_grid_desc_m_kblock,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x_global,
MeanVarDataType* const __restrict__ p_welford_mean,
MeanVarDataType* const __restrict__ p_welford_variance,
int32_t* const __restrict__ p_welford_count)
{
GridwiseWelford::Run(x_grid_desc_m_k,
mean_var_grid_desc_m_kblock,
num_k_block_tile_iteration,
p_x_global,
p_welford_mean,
p_welford_variance,
p_welford_count);
};
template <typename GridwiseWelfordNormalization,
typename MeanVarDataType,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename MeanVarGridDesc_M_KBlock,
typename CountGridDesc_M_KBlock,
typename XYGammaBetaGridDesc_M_K>
__global__ void
kernel_normalizationSplitK2nd(const MeanVarGridDesc_M_KBlock mean_var_grid_desc_m_kblock,
const CountGridDesc_M_KBlock count_grid_desc_m_kblock,
const XYGammaBetaGridDesc_M_K x_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K gamma_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K beta_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K y_grid_desc_m_k,
index_t num_k_mean_var_count_iteration,
index_t num_k_block_tile_iteration,
index_t k_grid_size,
ComputeDataType epsilon,
const MeanVarDataType* const p_mean_global,
const MeanVarDataType* const p_variance_global,
const int32_t* const p_welford_count_global,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseWelfordNormalization::Run(mean_var_grid_desc_m_kblock,
count_grid_desc_m_kblock,
x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
num_k_mean_var_count_iteration,
num_k_block_tile_iteration,
k_grid_size,
epsilon,
p_mean_global,
p_variance_global,
p_welford_count_global,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
y_elementwise_op);
};
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
// Y = Normalization(X, Beta, Gamma)
// M: Invarient length
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename ComputeDataType,
typename YDataType,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XYVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorSize>
struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
YElementwiseOperation,
Rank,
NumReduceDim>
{
using MeanVarDataType = ComputeDataType;
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize);
static_assert(
((GammaSrcVectorDim == 0 && MThreadSliceSize % GammaSrcVectorSize == 0) ||
(GammaSrcVectorDim == 1 && KThreadSliceSize % GammaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or gamma vector sizes configuration, please check!");
static_assert(
((BetaSrcVectorDim == 0 && MThreadSliceSize % BetaSrcVectorSize == 0) ||
(BetaSrcVectorDim == 1 && KThreadSliceSize % BetaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!");
using PassThrough = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeSrc2dDescriptor(const std::vector<index_t>& inLengths,
const std::vector<index_t>& inStrides,
int kBlockSize,
int numBlockTileIteration)
{
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t numSrcDim = Rank;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
make_tuple(make_unmerge_transform(make_tuple(
1, one_dim_inDesc.GetLength(Number<0>{})))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
make_tuple_from_array_and_index_seq(inLengths, InvariantDims{});
return transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}();
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const int reduceSizePerBlock = K_BlockTileSize * numBlockTileIteration;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K = reduceSizePerBlock * kBlockSize - reduceLength;
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded);
};
template <typename DoPads, index_t MPerTile, index_t KPerTile>
static auto MakeMeanVarDescriptor_M_K(index_t M, index_t K)
{
const auto grid_desc_m_k =
make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
return PadTensorDescriptor(grid_desc_m_k, make_tuple(MPerTile, KPerTile), DoPads{});
}
template <typename DoPads, index_t MPerTile, index_t KPerTile>
static auto MakeCountDescriptor_M_K(index_t M, index_t K)
{
const auto grid_desc_m_k =
make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I0, I1));
return PadTensorDescriptor(grid_desc_m_k, make_tuple(MPerTile, KPerTile), DoPads{});
}
using SrcGridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using Kernel1MeanVarGridDesc_M_KBlock =
decltype(MakeMeanVarDescriptor_M_K<Sequence<true, false>, 1, 1>(1, 1));
using Kernel2MeanVarGridDesc_M_KBlock =
decltype(MakeMeanVarDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
using Kernel2CountGridDesc_M_KBlock =
decltype(MakeCountDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
using GridwiseWelford = GridwiseNormalizationSplitK1st<XDataType,
ComputeDataType,
MeanVarDataType,
SrcGridDesc_M_K,
Kernel1MeanVarGridDesc_M_KBlock,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYVectorDim,
XSrcVectorSize>;
using GridwiseWelfordNormalization =
GridwiseNormalizationSplitK2nd<MeanVarDataType,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
Kernel2MeanVarGridDesc_M_KBlock,
Kernel2CountGridDesc_M_KBlock,
SrcGridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYVectorDim,
YDstVectorSize>;
struct Argument : public BaseArgument
{
Argument(const std::vector<index_t> lengths,
const std::vector<index_t> xStrides,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
YElementwiseOperation y_elementwise_op,
double epsilon,
const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y)
: p_x_(p_x),
p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
p_workspace_mean_{nullptr},
p_workspace_var_{nullptr},
p_workspace_count_{nullptr},
y_elementwise_op_(y_elementwise_op)
{
epsilon_ = static_cast<ComputeDataType>(epsilon);
Lengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(lengths, reduceDims);
xStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(xStrides, reduceDims);
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
gammaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(gammaStrides, reduceDims);
betaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(betaStrides, reduceDims);
std::tie(MRaw_, KRaw_) = get_2d_lengths<Rank, NumReduceDim>(Lengths_);
numBlockTileIteration_ = 1;
while(true)
{
int testKGridSize =
math::integer_divide_ceil(KRaw_, K_BlockTileSize * numBlockTileIteration_);
// we want the kGridSize_ be not more than 128
if(testKGridSize <= 128)
break;
++numBlockTileIteration_;
};
kGridSize_ = math::integer_divide_ceil(KRaw_, K_BlockTileSize * numBlockTileIteration_);
gridSize_ = math::integer_divide_ceil(MRaw_, M_BlockTileSize) * kGridSize_;
// We do not use vector load for mean, var and count
static constexpr index_t K_MeanVarCountBlockTileSize = KThreadClusterSize;
numMeanVarCountIteration_ =
math::integer_divide_ceil(kGridSize_, K_MeanVarCountBlockTileSize);
x_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, xStrides_, kGridSize_, numBlockTileIteration_);
gamma_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, gammaStrides_, kGridSize_, numBlockTileIteration_);
beta_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, betaStrides_, kGridSize_, numBlockTileIteration_);
y_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, yStrides_, kGridSize_, numBlockTileIteration_);
// We don't need to pad in K dimension for Welford1. Set KPerTile 1.
kernel1_mean_var_grid_desc_m_kblock_ =
MakeMeanVarDescriptor_M_K<Sequence<true, false>, M_BlockTileSize, 1>(MRaw_,
kGridSize_);
kernel2_mean_var_grid_desc_m_kblock_ =
MakeMeanVarDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
kernel2_count_grid_desc_m_kblock_ =
MakeCountDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
}
ComputeDataType epsilon_;
const XDataType* p_x_;
const GammaDataType* p_gamma_;
const BetaDataType* p_beta_;
YDataType* p_y_;
void* p_workspace_mean_;
void* p_workspace_var_;
void* p_workspace_count_;
std::vector<index_t> Lengths_;
std::vector<index_t> xStrides_;
std::vector<index_t> gammaStrides_;
std::vector<index_t> betaStrides_;
std::vector<index_t> yStrides_;
YElementwiseOperation y_elementwise_op_;
int kGridSize_;
int numMeanVarCountIteration_;
int numBlockTileIteration_;
size_t gridSize_;
SrcGridDesc_M_K x_grid_desc_m_k_;
SrcGridDesc_M_K gamma_grid_desc_m_k_;
SrcGridDesc_M_K beta_grid_desc_m_k_;
SrcGridDesc_M_K y_grid_desc_m_k_;
Kernel1MeanVarGridDesc_M_KBlock kernel1_mean_var_grid_desc_m_kblock_;
Kernel2MeanVarGridDesc_M_KBlock kernel2_mean_var_grid_desc_m_kblock_;
Kernel2CountGridDesc_M_KBlock kernel2_count_grid_desc_m_kblock_;
index_t MRaw_; // invarient length
index_t KRaw_; // reduce length
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(arg.p_workspace_mean_ == nullptr || arg.p_workspace_var_ == nullptr ||
arg.p_workspace_count_ == nullptr)
throw std::runtime_error("wrong! WorkSpace pointer has not been set");
auto kernel1 = kernel_normalizationSplitK1st<GridwiseWelford,
XDataType,
MeanVarDataType,
ComputeDataType,
SrcGridDesc_M_K,
Kernel1MeanVarGridDesc_M_KBlock>;
auto kernel2 = kernel_normalizationSplitK2nd<GridwiseWelfordNormalization,
MeanVarDataType,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
Kernel2MeanVarGridDesc_M_KBlock,
Kernel2CountGridDesc_M_KBlock,
SrcGridDesc_M_K>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel1,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.kernel1_mean_var_grid_desc_m_kblock_,
arg.numBlockTileIteration_,
arg.p_x_,
static_cast<MeanVarDataType*>(arg.p_workspace_mean_),
static_cast<MeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_));
avg_time += launch_and_time_kernel(stream_config,
kernel2,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.kernel2_mean_var_grid_desc_m_kblock_,
arg.kernel2_count_grid_desc_m_kblock_,
arg.x_grid_desc_m_k_,
arg.gamma_grid_desc_m_k_,
arg.beta_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.numMeanVarCountIteration_,
arg.numBlockTileIteration_,
arg.kGridSize_,
arg.epsilon_,
static_cast<MeanVarDataType*>(arg.p_workspace_mean_),
static_cast<MeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_),
arg.p_x_,
arg.p_gamma_,
arg.p_beta_,
arg.p_y_,
arg.y_elementwise_op_);
return avg_time;
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
size_t workspace_size = 0;
int welford_size = pArg_->MRaw_ * pArg_->kGridSize_;
// workspace for welford intermediate mean
workspace_size += welford_size * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate variance
workspace_size += welford_size * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate count
workspace_size += pArg_->kGridSize_ * sizeof(int32_t) + 64;
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
pArg_->p_workspace_ = p_workspace;
int welford_size = pArg_->MRaw_ * pArg_->kGridSize_;
// setup buffer used for intermediate welford mean
pArg_->p_workspace_mean_ = static_cast<char*>(pArg_->p_workspace_);
index_t mean_space_sz = welford_size * sizeof(MeanVarDataType);
mean_space_sz = math::integer_least_multiple(mean_space_sz, 64);
// setup buffer used for intermediate welford varirance
pArg_->p_workspace_var_ = reinterpret_cast<char*>(pArg_->p_workspace_mean_) + mean_space_sz;
index_t variance_space_sz = welford_size * sizeof(MeanVarDataType);
variance_space_sz = math::integer_least_multiple(variance_space_sz, 64);
// setup buffer used for intermediate welford count
pArg_->p_workspace_count_ =
reinterpret_cast<char*>(pArg_->p_workspace_var_) + variance_space_sz;
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
if constexpr(XYVectorDim == 0)
{
if constexpr(NumInvariantDim == 0)
{
return false;
}
else
{
if(p_arg_->xStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->invariant_lowest_length % XSrcVectorSize != 0)
return false;
if(p_arg_->invariant_lowest_length % YDstVectorSize != 0)
return false;
};
}
else
{
if(p_arg_->xStrides_[Rank - 1] != 1)
return false;
if(p_arg_->Lengths_[Rank - 1] % XSrcVectorSize != 0)
return false;
if(p_arg_->Lengths_[Rank - 1] % YDstVectorSize != 0)
return false;
};
// if fastest dim is not reduced
if constexpr(GammaSrcVectorDim == 0)
{
if(p_arg_->gammaStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->Lengths_[Rank - 1] % GammaSrcVectorSize != 0)
return false;
}
else // if fastest dim is reduced
{
if(p_arg_->gammaStrides_[Rank - 1] != 1)
return false;
if(p_arg_->Lengths_[Rank - 1] % GammaSrcVectorSize != 0)
return false;
}
// if fastest dim is not reduced
if constexpr(BetaSrcVectorDim == 0)
{
if(p_arg_->betaStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->invariant_lowest_length % BetaSrcVectorSize != 0)
return false;
}
else // if fastest dim is reduced
{
if(p_arg_->betaStrides_[Rank - 1] != 1)
return false;
if(p_arg_->Lengths_[Rank - 1] % BetaSrcVectorSize != 0)
return false;
}
if(p_arg_->kGridSize_ <= 1)
return false;
return true;
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<index_t> lengths,
const std::vector<index_t> xStrides,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
double epsilon,
const void* p_x,
const void* p_gamma,
const void* p_beta,
void* p_y,
void* p_saveMean,
void* p_saveInvVar,
YElementwiseOperation y_elementwise_op) override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore = p_saveMean;
ignore = p_saveInvVar;
return std::make_unique<Argument>(lengths,
xStrides,
gammaStrides,
betaStrides,
yStrides,
reduceDims,
y_elementwise_op,
epsilon,
static_cast<const XDataType*>(p_x),
static_cast<const GammaDataType*>(p_gamma),
static_cast<const BetaDataType*>(p_beta),
static_cast<YDataType*>(p_y));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceNormalizationSplitKImpl<" << BlockSize << ",";
str << "Cluster_MK_" << MThreadClusterSize << "_" << KThreadClusterSize << ",";
str << "Slice_MK_" << MThreadSliceSize << "_" << KThreadSliceSize << ",";
str << "XYSrcVectorDim_" << XYVectorDim << ",";
str << "VectorSize_X" << XSrcVectorSize << "_Gamma" << GammaSrcVectorSize << "_Beta" << BetaSrcVectorSize << "_Y" << YDstVectorSize << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -56,6 +56,12 @@ struct PassThrough
y = type_convert<bhalf_t>(x);
}
template <>
__host__ __device__ void operator()<bhalf_t, half_t>(bhalf_t& y, const half_t& x) const
{
y = type_convert<bhalf_t>(x);
}
template <>
__host__ __device__ void operator()<int8_t, int8_t>(int8_t& y, const int8_t& x) const
{
......@@ -86,6 +92,23 @@ struct UnaryConvert
}
};
struct ConvertBF16RTN
{
// convert to bf16 using round to nearest (rtn)
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(is_same<Y, bhalf_t>::value, "Data type is not supported by this operation!");
// check X datatype
static_assert(is_same<X, float>::value || is_same<X, half_t>::value,
"Data type is not supported by this operation!");
y = bf16_convert_rtn<Y>(x);
}
};
struct Scale
{
__host__ __device__ Scale(float scale) : scale_(scale) {}
......
......@@ -66,7 +66,8 @@ __global__ void
const ReduceGridDescriptor_MBlock_MPerBlock reduce_grid_desc_mblock_mperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......
......@@ -96,7 +96,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX
using ABDataTypeAdjusted =
conditional_t<is_same_v<ABDataType, ck::half_t>, ck::bhalf_t, ABDataType>;
#else
......
......@@ -54,7 +54,8 @@ __global__ void
const ReduceGridDescriptor_MBlock_MPerBlock reduce_grid_desc_mblock_mperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......
......@@ -44,7 +44,8 @@ __global__ void
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......
......@@ -57,7 +57,8 @@ __global__ void
const C0GridDescriptor_NBlock_NPerBlock c0_grid_desc_nblock_nperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// TODO ANT: separate into MMA + Epilogue
......
......@@ -165,7 +165,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -265,7 +266,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
#else
using FloatABAdjusted = FloatAB;
......
......@@ -44,7 +44,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainK0BlockLoop>(p_a_grid,
......
......@@ -43,7 +43,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -135,7 +136,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
#else
using FloatABAdjusted = FloatAB;
......
......@@ -42,7 +42,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
......
......@@ -30,7 +30,8 @@ __global__ void
kernel_gemm_xdlops_v2r4r2_simplified(typename GridwiseGemm::Argument karg,
const Block2CTileMap& b2c_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment