Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ee33b1fa
Commit
ee33b1fa
authored
Apr 10, 2022
by
Chao Liu
Browse files
adding thread group
parent
0e877b84
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1894 additions
and
0 deletions
+1894
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp
...ion/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp
+169
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp
...ion/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp
+130
-0
include/ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle_v2.hpp
...nsor_operation/gpu/device/device_gemm_xdl_cshuffle_v2.hpp
+691
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
...k/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
+198
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v2.hpp
...nsor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v2.hpp
+688
-0
include/ck/utility/thread_group.hpp
include/ck/utility/thread_group.hpp
+18
-0
No files found.
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v3r1.hpp"
namespace
ck
{
// this version does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray instead of C array for thread buffer
// 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
// 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
template
<
typename
ThreadGroup
,
typename
SrcElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
BlockSliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
ThreadTransferSrcResetCoordinateAfterRun
,
bool
ThreadTransferDstResetCoordinateAfterRun
,
index_t
NumThreadScratch
=
1
>
struct
ThreadGroupTensorSliceTransfer_v4r1
{
static
constexpr
index_t
nDim
=
remove_reference_t
<
SrcDesc
>::
GetNumOfDimension
();
static
constexpr
auto
thread_slice_lengths
=
BlockSliceLengths
{}
/
ThreadClusterLengths
{};
using
Index
=
MultiIndex
<
nDim
>
;
__device__
constexpr
ThreadGroupTensorSliceTransfer_v4r1
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_block_slice_origin
,
const
SrcElementwiseOperation
&
src_element_op
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
,
const
DstElementwiseOperation
&
dst_element_op
)
:
threadwise_transfer_
(
src_desc
,
make_zero_multi_index
<
nDim
>
(),
src_element_op
,
dst_desc
,
make_zero_multi_index
<
nDim
>
(),
dst_element_op
)
{
static_assert
(
nDim
==
remove_reference_t
<
remove_cv_t
<
SrcDesc
>>::
GetNumOfDimension
()
&&
nDim
==
remove_reference_t
<
remove_cv_t
<
DstDesc
>>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
SrcDimAccessOrder
::
Size
()
&&
nDim
==
DstDimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
BlockSliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
threadwise_transfer_
.
SetSrcSliceOrigin
(
src_desc
,
src_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
thread_data_idx_begin
);
}
}
template
<
typename
SrcBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunRead
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
RunRead
(
src_desc
,
src_buf
,
thread_scratch_id
);
}
}
template
<
typename
DstBuffer
,
index_t
ThreadScratchId
=
0
>
__device__
void
RunWrite
(
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
RunWrite
(
dst_desc
,
dst_buf
,
thread_scratch_id
);
}
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
,
index_t
ThreadScratchId
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
,
Number
<
ThreadScratchId
>
thread_scratch_id
)
{
RunRead
(
src_desc
,
src_buf
,
thread_scratch_id
);
RunWrite
(
dst_desc
,
dst_buf
,
thread_scratch_id
);
}
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_desc
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_desc
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v3r1
<
decltype
(
thread_slice_lengths
),
SrcElementwiseOperation
,
DstElementwiseOperation
,
DstInMemOp
,
SrcData
,
DstData
,
SrcDesc
,
DstDesc
,
SrcDimAccessOrder
,
DstDimAccessOrder
,
SrcVectorDim
,
DstVectorDim
,
SrcScalarPerVector
,
DstScalarPerVector
,
SrcScalarStrideInVector
,
DstScalarStrideInVector
,
ThreadTransferSrcResetCoordinateAfterRun
,
ThreadTransferDstResetCoordinateAfterRun
,
NumThreadScratch
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v6r1.hpp"
namespace
ck
{
// this version does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray instead of C array for thread buffer
// 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
// 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
template
<
typename
ThreadGroup
,
typename
ElementwiseOperation
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
BlockSliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
bool
ThreadTransferSrcResetCoordinateAfterRun
,
bool
ThreadTransferDstResetCoordinateAfterRun
>
struct
ThreadGroupTensorSliceTransfer_v6r1
{
static
constexpr
index_t
nDim
=
remove_reference_t
<
SrcDesc
>::
GetNumOfDimension
();
static
constexpr
auto
thread_slice_lengths
=
BlockSliceLengths
{}
/
ThreadClusterLengths
{};
using
Index
=
MultiIndex
<
nDim
>
;
__device__
constexpr
ThreadGroupTensorSliceTransfer_v6r1
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_block_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
,
const
ElementwiseOperation
&
element_op
)
:
threadwise_transfer_
(
src_desc
,
make_zero_multi_index
<
nDim
>
(),
dst_desc
,
make_zero_multi_index
<
nDim
>
(),
element_op
)
{
static_assert
(
nDim
==
remove_reference_t
<
remove_cv_t
<
SrcDesc
>>::
GetNumOfDimension
()
&&
nDim
==
remove_reference_t
<
remove_cv_t
<
DstDesc
>>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
()
&&
nDim
==
ThreadClusterArrangeOrder
::
Size
()
&&
nDim
==
DimAccessOrder
::
Size
(),
"wrong! nDim not consistent"
);
static_assert
(
is_same
<
BlockSliceLengths
,
decltype
(
thread_slice_lengths
*
ThreadClusterLengths
{})
>
{},
"wrong! threads should be mapped to cover entire slicing window"
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"wrong! ThreadGroup::GetNumOfThread() too small"
);
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
threadwise_transfer_
.
SetSrcSliceOrigin
(
src_desc
,
src_block_slice_origin
+
thread_data_idx_begin
);
threadwise_transfer_
.
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
thread_data_idx_begin
);
}
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
Run
(
src_desc
,
src_buf
,
dst_desc
,
dst_buf
);
}
}
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveSrcSliceWindow
(
src_desc
,
step
);
}
}
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
step
)
{
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
threadwise_transfer_
.
MoveDstSliceWindow
(
dst_desc
,
step
);
}
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v6r1
<
SrcData
,
DstData
,
SrcDesc
,
DstDesc
,
ElementwiseOperation
,
decltype
(
thread_slice_lengths
),
DimAccessOrder
,
VectorDim
,
ScalarPerVector
,
DstInMemOp
,
ThreadTransferSrcResetCoordinateAfterRun
,
ThreadTransferDstResetCoordinateAfterRun
>
;
ThreadwiseTransfer
threadwise_transfer_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle_v2.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v2.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
>
struct
DeviceGemm_Xdl_CShuffle_v2
:
public
DeviceGemm
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemm_Xdl_CShuffle_v2
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideC
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v2
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
KRaw
,
NRaw
,
StrideB
)},
c_grid_desc_m_n_
{
DeviceOp
::
MakeCGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideC
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
int
nrepeat
=
1
)
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K0
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
float
ave_time
=
0
;
if
(
has_main_k0_block_loop
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v2
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
true
>
;
if
(
nrepeat
==
0
)
{
launch_kernel
(
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
else
{
ave_time
=
launch_and_time_kernel
(
kernel
,
nrepeat
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v2
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
false
>
;
if
(
nrepeat
==
0
)
{
launch_kernel
(
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
else
{
ave_time
=
launch_and_time_kernel
(
kernel
,
nrepeat
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
int
nrepeat
=
1
)
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
nrepeat
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
index_t
/* KBatch */
=
1
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemm_Xdl_CShuffle_v2"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include "common_header.hpp"
namespace
ck
{
template
<
typename
AGridDesc
,
typename
ABlockDesc
,
typename
ABlockTransfer
,
typename
AGridBuffer
,
typename
ABlockBuffer
,
typename
ABlockTransferStep
,
typename
BGridDesc
,
typename
BBlockDesc
,
typename
BBlockTransfer
,
typename
BGridBuffer
,
typename
BBlockBuffer
,
typename
BBlockTransferStep
,
typename
BlockwiseGemm
,
typename
CThreadBuffer
,
index_t
NumPrefetch
,
bool
HasMainLoop
>
struct
GridwiseGemmPipeline_v2
;
// 1-stage prefetch
template
<
typename
AGridDesc
,
typename
ABlockDesc
,
typename
ABlockTransfer
,
typename
AGridBuffer
,
typename
ABlockBuffer
,
typename
ABlockTransferStep
,
typename
BGridDesc
,
typename
BBlockDesc
,
typename
BBlockTransfer
,
typename
BGridBuffer
,
typename
BBlockBuffer
,
typename
BBlockTransferStep
,
typename
BlockwiseGemm
,
typename
CThreadBuffer
,
bool
HasMainLoop
>
struct
GridwiseGemmPipeline_v2
<
AGridDesc
,
ABlockDesc
,
ABlockTransfer
,
AGridBuffer
,
ABlockBuffer
,
ABlockTransferStep
,
BGridDesc
,
BBlockDesc
,
BBlockTransfer
,
BGridBuffer
,
BBlockBuffer
,
BBlockTransferStep
,
BlockwiseGemm
,
CThreadBuffer
,
1
,
HasMainLoop
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
__device__
void
RunProducer
(
const
AGridDesc
&
a_grid_desc
,
const
ABlockDesc
&
a_block_desc
,
ABlockTransfer
&
a_blockwise_copy
,
const
AGridBuffer
&
a_grid_buf
,
ABlockBuffer
&
a_block_buf
,
const
ABlockTransferStep
&
a_block_copy_step
,
const
BGridDesc
&
b_grid_desc
,
const
BBlockDesc
&
b_block_desc
,
BBlockTransfer
&
b_blockwise_copy
,
const
BGridBuffer
&
b_grid_buf
,
BBlockBuffer
&
b_block_buf
,
const
BBlockTransferStep
&
b_block_copy_step
,
index_t
num_loop
)
{
// global read 0
a_blockwise_copy
.
RunRead
(
a_grid_desc
,
a_grid_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc
,
b_grid_buf
);
// move to 1
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_block_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_block_copy_step
);
// LDS write 0
a_blockwise_copy
.
RunWrite
(
a_block_desc
,
a_block_buf
);
// global Read 1
a_blockwise_copy
.
RunRead
(
a_grid_desc
,
a_grid_buf
);
// LDS write 0
b_blockwise_copy
.
RunWrite
(
b_block_desc
,
b_block_buf
);
// global Read 1
b_blockwise_copy
.
RunRead
(
b_grid_desc
,
b_grid_buf
);
// main body
// FIXME: HasMainLoop = (num_loop) > 2
if
constexpr
(
HasMainLoop
)
{
index_t
i
=
0
;
do
{
block_sync_lds
();
// GEMM i
block_sync_lds
();
// move to i + 2
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_block_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_block_copy_step
);
// LDS write i + 1
a_blockwise_copy
.
RunWrite
(
a_block_desc
,
a_block_buf
);
// global read i + 2
a_blockwise_copy
.
RunRead
(
a_grid_desc
,
a_grid_buf
);
// LDS write i + 1
b_blockwise_copy
.
RunWrite
(
b_block_desc
,
b_block_buf
);
// global read i + 2
b_blockwise_copy
.
RunRead
(
b_grid_desc
,
b_grid_buf
);
++
i
;
}
while
(
i
<
(
num_loop
-
2
));
}
// tail
{
block_sync_lds
();
// GEMM num_loop - 2
block_sync_lds
();
// LDS write num_loop - 1
a_blockwise_copy
.
RunWrite
(
a_block_desc
,
a_block_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc
,
b_block_buf
);
block_sync_lds
();
// GEMM num_loop - 1
}
}
static
__device__
void
RunConsumer
(
ABlockBuffer
&
a_block_buf
,
BBlockBuffer
&
b_block_buf
,
const
BlockwiseGemm
&
blockwise_gemm
,
CThreadBuffer
&
c_thread_buf
,
index_t
num_loop
)
{
// Initialize C
c_thread_buf
.
Clear
();
// main body
// FIXME: HasMainLoop = (num_loop) > 2
if
constexpr
(
HasMainLoop
)
{
index_t
i
=
0
;
do
{
block_sync_lds
();
// GEMM i
blockwise_gemm
.
Run
(
a_block_buf
,
b_block_buf
,
c_thread_buf
);
block_sync_lds
();
// move to i + 2
// LDS write i + 1
// global read i + 2
// LDS write i + 1
// global read i + 2
++
i
;
}
while
(
i
<
(
num_loop
-
2
));
}
// tail
{
block_sync_lds
();
// GEMM num_loop - 2
blockwise_gemm
.
Run
(
a_block_buf
,
b_block_buf
,
c_thread_buf
);
block_sync_lds
();
// LDS write num_loop - 1
block_sync_lds
();
// GEMM num_loop - 1
blockwise_gemm
.
Run
(
a_block_buf
,
b_block_buf
,
c_thread_buf
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v2.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "blockwise_tensor_slice_transfer_v6r1.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "gridwise_gemm_pipeline_v1.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2CTileMap
,
bool
HasMainK0BlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_xdl_cshuffle_v2
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2CTileMap
block_2_ctile_map
)
{
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainK0BlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_ctile_map
);
}
template
<
typename
FloatAB
,
typename
FloatGemmAcc
,
typename
FloatCShuffle
,
typename
FloatC
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDesc_M_N
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
>
struct
GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v2
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size
*
sizeof
(
FloatCShuffle
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
// "wrong! K1 need to be known at compile-time");
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_bk0_n_bk1
.
GetLength
(
I1
);
const
auto
K
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
);
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
))
return
false
;
// check NumGemmKPrefetchStage
if
constexpr
(
NumGemmKPrefetchStage
==
1
)
{
// 1-stage prefetch always supported
}
else
if
constexpr
(
NumGemmKPrefetchStage
==
2
)
{
// 2-stage prefetch currently only support even number of K0 loop
// TODO: add support for odd number of K0 loop
if
(
!
((
K
/
KPerBlock
)
%
2
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
// TODO move this function into GEMM-pipeline class
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
{
const
bool
has_main_k0_block_loop
=
((
K0
*
AK1
)
/
(
NumGemmKPrefetchStage
*
KPerBlock
))
>
1
;
return
has_main_k0_block_loop
;
}
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
// FIXME: remove
constexpr
auto
M01
=
I1
;
constexpr
auto
N01
=
I1
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}));
const
auto
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
}
using
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
template
<
bool
HasMainK0BlockLoop
,
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
using
ThisThreadBlock
=
AnyThreadBlock
<
BlockSize
>
;
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
<
ThisThreadBlock
,
FloatAB
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
{};
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v1
<
remove_cvref_t
<
decltype
(
a_grid_desc_ak0_m_ak1
)
>
,
remove_cvref_t
<
decltype
(
a_block_desc_ak0_m_ak1
)
>
,
remove_cvref_t
<
decltype
(
a_blockwise_copy
)
>
,
remove_cvref_t
<
decltype
(
a_grid_buf
)
>
,
remove_cvref_t
<
decltype
(
a_block_buf
)
>
,
remove_cvref_t
<
decltype
(
a_block_slice_copy_step
)
>
,
remove_cvref_t
<
decltype
(
b_grid_desc_bk0_n_bk1
)
>
,
remove_cvref_t
<
decltype
(
b_block_desc_bk0_n_bk1
)
>
,
remove_cvref_t
<
decltype
(
b_blockwise_copy
)
>
,
remove_cvref_t
<
decltype
(
b_grid_buf
)
>
,
remove_cvref_t
<
decltype
(
b_block_buf
)
>
,
remove_cvref_t
<
decltype
(
b_block_slice_copy_step
)
>
,
remove_cvref_t
<
decltype
(
blockwise_gemm
)
>
,
remove_cvref_t
<
decltype
(
c_thread_buf
)
>
,
NumGemmKPrefetchStage
,
HasMainK0BlockLoop
>
{};
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
Run
(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatCShuffle
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
FloatCShuffle
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// index_t BlockSize,
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
FloatCShuffle
,
// typename SrcData,
FloatC
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
};
}
// namespace ck
include/ck/utility/thread_group.hpp
0 → 100644
View file @
ee33b1fa
#pragma once
#include "get_id.hpp"
namespace
ck
{
template
<
index_t
ThreadPerBlock
>
struct
AnyThreadBlock
{
static
constexpr
index_t
kNumThread_
=
ThreadPerBlock
;
__device__
static
constexpr
index_t
GetNumOfThread
()
{
return
kNumThread_
;
}
__device__
static
constexpr
bool
IsBelong
()
{
return
true
;
}
__device__
static
index_t
GetThreadId
()
{
return
get_thread_local_1d_id
();
}
};
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment