Commit ed966e7f authored by Jing Zhang's avatar Jing Zhang
Browse files

clean

parent d3146496
...@@ -78,7 +78,7 @@ ...@@ -78,7 +78,7 @@
// experimental implementation // experimental implementation
#ifndef CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK #ifndef CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0 #define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#endif #endif
#ifndef CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK #ifndef CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK
......
#include <unistd.h> #include <unistd.h>
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
#include "driver_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw_outpad.hpp" #include "driver_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw.hpp"
template <typename TInWei, template <typename TInWei,
typename TAcc, typename TAcc,
...@@ -48,7 +48,7 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw( ...@@ -48,7 +48,7 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw(
const auto Y = wei_k_c_y_x_lengths[I2]; const auto Y = wei_k_c_y_x_lengths[I2];
const auto X = wei_k_c_y_x_lengths[I3]; const auto X = wei_k_c_y_x_lengths[I3];
constexpr auto InWeiVectorSize = 8; constexpr auto InWeiVectorSize = 4;
#if 1 #if 1
const auto C0 = C / Number<InWeiVectorSize>{}; const auto C0 = C / Number<InWeiVectorSize>{};
...@@ -106,16 +106,16 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw( ...@@ -106,16 +106,16 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw(
constexpr index_t HoPerBlock = 8; constexpr index_t HoPerBlock = 8;
constexpr index_t WoPerBlock = 32; constexpr index_t WoPerBlock = 32;
constexpr index_t E1 = 2 * 9; constexpr index_t E1 = 4 * 9;
constexpr index_t E2 = 8; constexpr index_t E2 = C1;
constexpr index_t EPerBlock = 2; constexpr index_t EPerBlock = 4;
constexpr index_t KPerThread = KPerBlock; constexpr index_t KPerThread = KPerBlock;
constexpr index_t HoPerThread = 2; constexpr index_t HoPerThread = 2;
constexpr index_t WoPerThread = 2; constexpr index_t WoPerThread = 2;
constexpr index_t EPerThread = 1; constexpr index_t EPerThread = 1;
using ABlockTransferThreadSliceLengths_E0_E1_K_E2 = Sequence<1, 9, 1, 8>; using ABlockTransferThreadSliceLengths_E0_E1_K_E2 = Sequence<1, 9, 1, E2>;
using ABlockTransferThreadClusterLengths_E0_E1_K_E2 = Sequence<1, EPerBlock, 16, 1>; using ABlockTransferThreadClusterLengths_E0_E1_K_E2 = Sequence<1, EPerBlock, 16, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_E2 = E2; constexpr index_t ABlockTransferSrcScalarPerVector_E2 = E2;
...@@ -123,7 +123,7 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw( ...@@ -123,7 +123,7 @@ void device_convolution_forward_implicit_gemm_v5r1_dlops_nchw_kcyx_nkhw(
constexpr index_t BThreadTransferSrcScalarPerVector_E2 = E2; constexpr index_t BThreadTransferSrcScalarPerVector_E2 = E2;
constexpr index_t CThreadTransferDstScalarPerVector_K = 8; constexpr index_t CThreadTransferDstScalarPerVector_K = K1;
#endif #endif
constexpr auto conv_driver = constexpr auto conv_driver =
......
#ifndef DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP #ifndef DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_DLOPS_NCHW_KCYX_NKHW_HPP
#define DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP #define DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_DLOPS_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp" #include "common_header.hpp"
#include "tensor_descriptor.hpp" #include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp" #include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_dlops_v2.hpp" #include "gridwise_gemm_dlops_v2.hpp"
#include "gridwise_operation_wrapper.hpp"
template <ck::index_t BlockSize, template <ck::index_t BlockSize,
typename FloatAB, typename FloatAB,
typename FloatAcc, typename FloatAcc,
typename FloatC, typename FloatC,
ck::index_t E1,
ck::index_t E2,
ck::index_t KPerBlock, ck::index_t KPerBlock,
ck::index_t HoPerBlock, ck::index_t HoPerBlock,
ck::index_t WoPerBlock, ck::index_t WoPerBlock,
ck::index_t EPerBlock, ck::index_t E1PerBlock,
ck::index_t KPerThread, ck::index_t KPerThread,
ck::index_t HoPerThread, ck::index_t HoPerThread,
ck::index_t WoPerThread, ck::index_t WoPerThread,
ck::index_t EPerThread, ck::index_t EPerThread,
typename ABlockTransferThreadSliceLengths_E_K, typename ABlockTransferThreadSliceLengths_E0_E1_K_E2,
typename ABlockTransferThreadClusterLengths_E_K, typename ABlockTransferThreadClusterLengths_E0_E1_K_E2,
ck::index_t ABlockTransferSrcScalarPerVector_E, ck::index_t ABlockTransferSrcScalarPerVector_E2,
ck::index_t ABlockTransferDstScalarPerVector_K, ck::index_t ABlockTransferDstScalarPerVector_E2,
ck::index_t BThreadTransferSrcScalarPerVector_W, ck::index_t BThreadTransferSrcScalarPerVector_E2,
ck::index_t CThreadTransferDstScalarPerVector_W> ck::index_t CThreadTransferDstScalarPerVector_K>
struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_outpad
{ {
template <typename... Wei, template <typename... Wei,
typename... In, typename... In,
...@@ -34,16 +35,17 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad ...@@ -34,16 +35,17 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad
typename ConvDilations, typename ConvDilations,
typename InLeftPads, typename InLeftPads,
typename InRightPads> typename InRightPads>
__host__ void Run(const ck::TensorDescriptor<Wei...>& wei_k_c_y_x_global_desc, __host__ float Run(const ck::TensorDescriptor<Wei...>& wei_k_c0_y_x_c1_global_desc,
const ck::TensorDescriptor<In...>& in_n_c_hi_wi_global_desc, const ck::TensorDescriptor<In...>& in_n_c0_hi_wi_c1_global_desc,
const ck::TensorDescriptor<Out...>& out_n_k0_ho_wo_k1_global_desc, const ck::TensorDescriptor<Out...>& out_n_k0_ho_wo_k1_global_desc,
const ConvStrides& conv_strides, const ConvStrides& conv_strides,
const ConvDilations& conv_dilations, const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads, const InLeftPads& in_left_pads,
const InRightPads& in_right_pads, const InRightPads& in_right_pads,
const FloatAB* __restrict__ p_wei_global, const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_in_global, const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_out_global) const FloatC* __restrict__ p_c_grid,
const int nrepeat) const
{ {
using namespace ck; using namespace ck;
...@@ -53,21 +55,20 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad ...@@ -53,21 +55,20 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad
constexpr auto I3 = Number<3>{}; constexpr auto I3 = Number<3>{};
constexpr auto I4 = Number<4>{}; constexpr auto I4 = Number<4>{};
const auto N = in_n_c_hi_wi_global_desc.GetLength(I0); const auto N = in_n_c0_hi_wi_c1_global_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_global_desc.GetLength(I1); const auto C0 = in_n_c0_hi_wi_c1_global_desc.GetLength(I1);
const auto K0 = out_n_k0_ho_wo_k1_global_desc.GetLength(I1); const auto Hi = in_n_c0_hi_wi_c1_global_desc.GetLength(I2);
const auto Wi = in_n_c0_hi_wi_c1_global_desc.GetLength(I3);
const auto Hi = in_n_c_hi_wi_global_desc.GetLength(I2); const auto C1 = in_n_c0_hi_wi_c1_global_desc.GetLength(I4);
const auto Wi = in_n_c_hi_wi_global_desc.GetLength(I3);
const auto K0 = out_n_k0_ho_wo_k1_global_desc.GetLength(I1);
const auto Ho = out_n_k0_ho_wo_k1_global_desc.GetLength(I2); const auto Ho = out_n_k0_ho_wo_k1_global_desc.GetLength(I2);
const auto Wo = out_n_k0_ho_wo_k1_global_desc.GetLength(I3); const auto Wo = out_n_k0_ho_wo_k1_global_desc.GetLength(I3);
const auto K1 = out_n_k0_ho_wo_k1_global_desc.GetLength(I4); const auto K1 = out_n_k0_ho_wo_k1_global_desc.GetLength(I4);
const auto K = wei_k_c_y_x_global_desc.GetLength(I0); const auto K = wei_k_c0_y_x_c1_global_desc.GetLength(I0);
const auto Y = wei_k_c_y_x_global_desc.GetLength(I2); const auto Y = wei_k_c0_y_x_c1_global_desc.GetLength(I2);
const auto X = wei_k_c_y_x_global_desc.GetLength(I3); const auto X = wei_k_c0_y_x_c1_global_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0]; const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1]; const auto ConvStrideW = conv_strides[I1];
...@@ -75,85 +76,139 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad ...@@ -75,85 +76,139 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad
const auto ConvDilationH = conv_dilations[I0]; const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1]; const auto ConvDilationW = conv_dilations[I1];
const auto Hop = (Ho + HoPerBlock - 1) / HoPerBlock * HoPerBlock;
const auto Wop = (Wo + WoPerBlock - 1) / WoPerBlock * WoPerBlock;
const auto OutRightPadH = Hop - Ho;
const auto OutRightPadW = Wop - Wo;
const auto InLeftPadH = in_left_pads[I0]; const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1]; const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0]; const auto InRightPadH = in_right_pads[I0] + OutRightPadH * ConvStrideH;
const auto InRightPadW = in_right_pads[I1]; const auto InRightPadW = in_right_pads[I1] + OutRightPadW * ConvStrideW;
std::cerr << "OutRightPadH = " << OutRightPadH << " OutRightPadW = " << OutRightPadW
<< std::endl;
std::cerr << "InRightPadH = " << InRightPadH << " InRightPadW = " << InRightPadW
<< std::endl;
const auto E = C0 * Y * X;
static_assert(E2 == C1, "");
const auto E0 = E / E1;
// weight tensor // weight tensor
const auto wei_e_k_global_desc = transform_tensor_descriptor( const auto a_e0_k_e2_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, C * Y * X)), make_naive_tensor_descriptor_packed(make_tuple(K, C0 * Y * X, E2)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(C * Y * X)), make_tuple(make_pass_through_transform(K),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_pass_through_transform(C0 * Y * X),
make_tuple(Sequence<1>{}, Sequence<0>{})); make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}, Sequence<2>{}));
const auto a_e0_e1_k_e2_grid_desc =
transform_tensor_descriptor(a_e0_k_e2_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(E0, E1)),
make_pass_through_transform(K),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}));
// input tensor // input tensor
const auto in_n_c_hip_wip_global_desc = transform_tensor_descriptor( const auto in_n_c0_hip_wip_c1_global_desc = transform_tensor_descriptor(
in_n_c_hi_wi_global_desc, in_n_c0_hi_wi_c1_global_desc,
make_tuple(make_pass_through_transform(N), make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C), make_pass_through_transform(C0),
make_pad_transform(Hi, InLeftPadH, InRightPadH), make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW)), make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}), make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{})); make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_c_y_ho_x_wo_global_desc = transform_tensor_descriptor( const auto in_n_c0_y_ho_x_wo_c1_global_desc = transform_tensor_descriptor(
in_n_c_hip_wip_global_desc, in_n_c0_hip_wip_c1_global_desc,
make_tuple( make_tuple(
make_pass_through_transform(N), make_pass_through_transform(N),
make_pass_through_transform(C), make_pass_through_transform(C0),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)), make_embed_transform(make_tuple(Y, Hop), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW))), make_embed_transform(make_tuple(X, Wop), make_tuple(ConvDilationW, ConvStrideW)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}), make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{})); make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
const auto in_e_n_ho_wo_global_desc = transform_tensor_descriptor( Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}, Sequence<6>{}));
in_n_c_y_ho_x_wo_global_desc,
make_tuple(make_merge_transform(make_tuple(C, Y, X)), const auto b_e0_n_ho_wo_e2_grid_desc = transform_tensor_descriptor(
in_n_c0_y_ho_x_wo_c1_global_desc,
make_tuple(make_merge_transform(make_tuple(C0, Y, X)),
make_pass_through_transform(N), make_pass_through_transform(N),
make_pass_through_transform(Ho), make_pass_through_transform(Hop),
make_pass_through_transform(Wo)), make_pass_through_transform(Wop),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0>{}, Sequence<3>{}, Sequence<5>{}), make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{})); make_tuple(
Sequence<1, 2, 4>{}, Sequence<0>{}, Sequence<3>{}, Sequence<5>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto b_e0_e1_n_ho_wo_e2_grid_desc = transform_tensor_descriptor(
b_e0_n_ho_wo_e2_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(E0, E1)),
make_pass_through_transform(N),
make_pass_through_transform(Hop),
make_pass_through_transform(Wop),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}, Sequence<5>{}));
// output tensor // output tensor
const auto out_k_n_ho_wo_global_desc = transform_tensor_descriptor( const auto c_k_n_hop_wop_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N, K0, Ho, Wo, K1)), make_naive_tensor_descriptor_packed(make_tuple(N, K0, Ho, Wo, K1)),
make_tuple(make_merge_transform(make_tuple(K0, K1)), make_tuple(make_merge_transform(make_tuple(K0, K1)),
make_pass_through_transform(N), make_pass_through_transform(N),
make_pass_through_transform(Ho), make_pad_transform(Ho, 0, OutRightPadH),
make_pass_through_transform(Wo)), make_pad_transform(Wo, 0, OutRightPadW)),
make_tuple(Sequence<1, 4>{}, Sequence<0>{}, Sequence<2>{}, Sequence<3>{}), make_tuple(Sequence<1, 4>{}, Sequence<0>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{})); make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto E = C * Y * X; std::cerr << "Hop = " << Hop << " Wop = " << Wop << std::endl;
if(!((K % KPerBlock) == 0 && (Ho % HoPerBlock) == 0 && (Wo % WoPerBlock) == 0 && if(!((K % KPerBlock) == 0 && (Hop % HoPerBlock) == 0 && (Wop % WoPerBlock) == 0 &&
(E % EPerBlock) == 0)) (E1 % E1PerBlock) == 0))
{ {
throw std::runtime_error("wrong! GEMM size no divisible"); throw std::runtime_error("wrong! GEMM size no divisible");
} }
// hack to control index calculation when iterating over a_k_m_global tensor // hack to control index calculation when iterating over a_k_m_global tensor
constexpr auto a_e_k_global_step_hacks = constexpr auto a_e0_e1_k_e2_global_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{}), make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0>{},
make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{})); Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{},
constexpr auto a_e_k_global_move_slice_window_step_hack = Sequence<0, 0, 0>{}; Sequence<0, 0, 0, 0, 0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0>{},
constexpr auto b_e_n_ho_wo_global_step_hacks = Sequence<0, 0, 0, 0, 0, 0, 0>{},
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0>{}, Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, Sequence<0, 0, 0, 0, 0, 0, 0>{}));
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), constexpr auto a_e0_e1_k_e2_global_move_slice_window_step_hack =
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0>{}, Sequence<0, 0, 0, 0, 0, 0, 0>{};
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, constexpr auto b_e0_e1_n_ho_wo_e2_global_step_hacks = make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
constexpr auto b_e_n_ho_wo_global_move_slice_window_step_hack = Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0>{}; Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}));
constexpr auto b_e0_e1_n_ho_wo_e2_global_move_slice_window_step_hack =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{};
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor // hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
// hack for NKHW format // hack for NKHW format
...@@ -167,182 +222,320 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad ...@@ -167,182 +222,320 @@ struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_pad
Sequence<0, 0, 0, 0, 0>{}, Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{})); Sequence<0, 0, 0, 0, 0>{}));
#if 1
// GEMM // GEMM
using gridwise_gemm = GridwiseGemmDlops_km_kn_mn_v3< using GridwiseGemm = GridwiseGemmDlops_km_kn_mn_v3<
BlockSize, BlockSize,
FloatAB, FloatAB,
FloatAcc, FloatAcc,
FloatC, FloatC,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum_t::Set,
decltype(wei_e_k_global_desc), decltype(a_e0_e1_k_e2_grid_desc),
decltype(in_e_n_ho_wo_global_desc), decltype(b_e0_e1_n_ho_wo_e2_grid_desc),
decltype(out_k_n_ho_wo_global_desc), decltype(c_k_n_hop_wop_grid_desc),
E1,
E2,
KPerBlock, KPerBlock,
HoPerBlock, HoPerBlock,
WoPerBlock, WoPerBlock,
EPerBlock, E1PerBlock,
KPerThread, KPerThread,
HoPerThread, HoPerThread,
WoPerThread, WoPerThread,
EPerThread, EPerThread,
ABlockTransferThreadSliceLengths_E_K, ABlockTransferThreadSliceLengths_E0_E1_K_E2,
ABlockTransferThreadClusterLengths_E_K, ABlockTransferThreadClusterLengths_E0_E1_K_E2,
Sequence<1, 0>, Sequence<2, 0, 1, 3>,
Sequence<1, 0>, Sequence<2, 0, 1, 3>,
0,
ABlockTransferSrcScalarPerVector_E,
ABlockTransferDstScalarPerVector_K,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 3, 1>,
3, 3,
BThreadTransferSrcScalarPerVector_W, ABlockTransferSrcScalarPerVector_E2,
ABlockTransferDstScalarPerVector_E2,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 3, 4, 1, 5>,
5,
BThreadTransferSrcScalarPerVector_E2,
false, // don't move back src coordinate after threadwise copy, which will be fused with false, // don't move back src coordinate after threadwise copy, which will be fused with
// MoveSrcSliceWindow() to save addr computation // MoveSrcSliceWindow() to save addr computation
Sequence<0, 2, 3, 1>, Sequence<2, 3, 1, 0>,
0, 0,
CThreadTransferDstScalarPerVector_W, CThreadTransferDstScalarPerVector_K,
decltype(a_e_k_global_step_hacks), decltype(a_e0_e1_k_e2_global_step_hacks),
decltype(b_e_n_ho_wo_global_step_hacks), decltype(b_e0_e1_n_ho_wo_e2_global_step_hacks),
decltype(c_k_n_ho_wo_global_tensor_step_hacks), decltype(c_k_n_ho_wo_global_tensor_step_hacks),
decltype(a_e_k_global_move_slice_window_step_hack), decltype(a_e0_e1_k_e2_global_move_slice_window_step_hack),
decltype(b_e_n_ho_wo_global_move_slice_window_step_hack)>; decltype(b_e0_e1_n_ho_wo_e2_global_move_slice_window_step_hack)>;
const auto GridSize = (K / KPerBlock) * (Ho / HoPerBlock) * (Wo / WoPerBlock) * N; using AGridDesc_E0_E1_K_E2 = decltype(a_e0_e1_k_e2_grid_desc);
using BGridDesc_E0_E1_N_Ho_Wo_E2 = decltype(b_e0_e1_n_ho_wo_e2_grid_desc);
using CGridDesc_K_N_Ho_Wo = decltype(c_k_n_hop_wop_grid_desc);
const bool has_main_k_block_loop = (E + EPerBlock) / (2 * EPerBlock) > 1; const auto grid_size = (K / KPerBlock) * (Hop / HoPerBlock) * (Wop / WoPerBlock) * N;
const bool has_double_tail_k_block_loop = (E / EPerBlock) % 2 == 0; const bool has_main_k_block_loop = (E1 + E1PerBlock) / (2 * E1PerBlock) > 1;
index_t nrepeat = 100; const bool has_double_tail_k_block_loop = (E1 / E1PerBlock) % 2 == 0;
for(index_t i = 0; i < 5; ++i) std::cerr << "has_main_k_block_loop = " << has_main_k_block_loop
<< " has_double_tail_k_block_loop = " << has_double_tail_k_block_loop
<< std::endl;
const auto c_blockid_to_k_n_ho_wo_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(I0, I0))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
using CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo =
decltype(c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
float ave_time = 0;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{ {
std::cout << "Start running " << nrepeat << " times..." << std::endl; const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
KernelTimer timer; FloatAB,
timer.Start(); FloatC,
std::cout << "has_main_k_block_loop: " << has_main_k_block_loop remove_reference_t<AGridDesc_E0_E1_K_E2>,
<< " has_double_tail_k_block_loop: " << has_double_tail_k_block_loop remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
<< std::endl; remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
for(index_t j = 0; j < nrepeat; ++j) true,
{ false>;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{ ave_time = launch_and_time_kernel(kernel,
const auto kernel = run_gridwise_operation<gridwise_gemm, nrepeat,
decltype(wei_e_k_global_desc), dim3(grid_size),
const FloatAB*, dim3(BlockSize),
decltype(in_e_n_ho_wo_global_desc), 0,
const FloatAB*, p_a_grid,
decltype(out_k_n_ho_wo_global_desc), p_b_grid,
FloatC*, p_c_grid,
integral_constant<bool, true>, a_e0_e1_k_e2_grid_desc,
integral_constant<bool, true>>; b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
launch_kernel(kernel, c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
dim3(GridSize),
dim3(BlockSize),
0,
wei_e_k_global_desc,
p_wei_global,
in_e_n_ho_wo_global_desc,
p_in_global,
out_k_n_ho_wo_global_desc,
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
decltype(wei_e_k_global_desc),
const FloatAB*,
decltype(in_e_n_ho_wo_global_desc),
const FloatAB*,
decltype(out_k_n_ho_wo_global_desc),
FloatC*,
integral_constant<bool, true>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
wei_e_k_global_desc,
p_wei_global,
in_e_n_ho_wo_global_desc,
p_in_global,
out_k_n_ho_wo_global_desc,
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
decltype(wei_e_k_global_desc),
const FloatAB*,
decltype(in_e_n_ho_wo_global_desc),
const FloatAB*,
decltype(out_k_n_ho_wo_global_desc),
FloatC*,
integral_constant<bool, false>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
wei_e_k_global_desc,
p_wei_global,
in_e_n_ho_wo_global_desc,
p_in_global,
out_k_n_ho_wo_global_desc,
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
decltype(wei_e_k_global_desc),
const FloatAB*,
decltype(in_e_n_ho_wo_global_desc),
const FloatAB*,
decltype(out_k_n_ho_wo_global_desc),
FloatC*,
integral_constant<bool, false>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
wei_e_k_global_desc,
p_wei_global,
in_e_n_ho_wo_global_desc,
p_in_global,
out_k_n_ho_wo_global_desc,
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
timer.End();
float ave_time = timer.GetElapsedTime() / nrepeat;
float perf =
static_cast<float>(calculate_convolution_flops(in_n_c_hi_wi_global_desc,
wei_k_c_y_x_global_desc,
out_n_k0_ho_wo_k1_global_desc)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
} }
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
else
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
return ave_time;
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
DeviceMem a_e0_e1_k_e2_grid_desc_dev_buf(sizeof(AGridDesc_E0_E1_K_E2));
DeviceMem b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf(sizeof(BGridDesc_E0_E1_N_Ho_Wo_E2));
DeviceMem c_k_n_hop_wop_grid_desc_dev_buf(sizeof(CGridDesc_K_N_Ho_Wo));
DeviceMem c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf(
sizeof(CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo));
a_e0_e1_k_e2_grid_desc_dev_buf.ToDevice(&a_e0_e1_k_e2_grid_desc);
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.ToDevice(&b_e0_e1_n_ho_wo_e2_grid_desc);
c_k_n_hop_wop_grid_desc_dev_buf.ToDevice(&c_k_n_hop_wop_grid_desc);
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.ToDevice(
&c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
float ave_time = 0;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
return ave_time;
#endif #endif
} }
}; };
......
#ifndef DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_DLOPS_NCHW_KCYX_NKHW_OUTPAD_HPP
#define DRIVER_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_DLOPS_NCHW_KCYX_NKHW_OUTPAD_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_dlops_v2.hpp"
template <ck::index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
ck::index_t E1,
ck::index_t E2,
ck::index_t KPerBlock,
ck::index_t HoPerBlock,
ck::index_t WoPerBlock,
ck::index_t E1PerBlock,
ck::index_t KPerThread,
ck::index_t HoPerThread,
ck::index_t WoPerThread,
ck::index_t EPerThread,
typename ABlockTransferThreadSliceLengths_E0_E1_K_E2,
typename ABlockTransferThreadClusterLengths_E0_E1_K_E2,
ck::index_t ABlockTransferSrcScalarPerVector_E2,
ck::index_t ABlockTransferDstScalarPerVector_E2,
ck::index_t BThreadTransferSrcScalarPerVector_E2,
ck::index_t CThreadTransferDstScalarPerVector_K>
struct DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nchw_kcyx_nkhw_outpad
{
template <typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
__host__ float Run(const ck::TensorDescriptor<Wei...>& wei_k_c0_y_x_c1_global_desc,
const ck::TensorDescriptor<In...>& in_n_c0_hi_wi_c1_global_desc,
const ck::TensorDescriptor<Out...>& out_n_k0_ho_wo_k1_global_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const int nrepeat) const
{
using namespace ck;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto I4 = Number<4>{};
const auto N = in_n_c0_hi_wi_c1_global_desc.GetLength(I0);
const auto C0 = in_n_c0_hi_wi_c1_global_desc.GetLength(I1);
const auto Hi = in_n_c0_hi_wi_c1_global_desc.GetLength(I2);
const auto Wi = in_n_c0_hi_wi_c1_global_desc.GetLength(I3);
const auto C1 = in_n_c0_hi_wi_c1_global_desc.GetLength(I4);
const auto K0 = out_n_k0_ho_wo_k1_global_desc.GetLength(I1);
const auto Ho = out_n_k0_ho_wo_k1_global_desc.GetLength(I2);
const auto Wo = out_n_k0_ho_wo_k1_global_desc.GetLength(I3);
const auto K1 = out_n_k0_ho_wo_k1_global_desc.GetLength(I4);
const auto K = wei_k_c0_y_x_c1_global_desc.GetLength(I0);
const auto Y = wei_k_c0_y_x_c1_global_desc.GetLength(I2);
const auto X = wei_k_c0_y_x_c1_global_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto Hop = (Ho + HoPerBlock - 1) / HoPerBlock * HoPerBlock;
const auto Wop = (Wo + WoPerBlock - 1) / WoPerBlock * WoPerBlock;
const auto OutRightPadH = Hop - Ho;
const auto OutRightPadW = Wop - Wo;
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0] + OutRightPadH * ConvStrideH;
const auto InRightPadW = in_right_pads[I1] + OutRightPadW * ConvStrideW;
std::cerr << "OutRightPadH = " << OutRightPadH << " OutRightPadW = " << OutRightPadW
<< std::endl;
std::cerr << "InRightPadH = " << InRightPadH << " InRightPadW = " << InRightPadW
<< std::endl;
const auto E = C0 * Y * X;
static_assert(E2 == C1, "");
const auto E0 = E / E1;
// weight tensor
const auto a_e0_k_e2_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, C0 * Y * X, E2)),
make_tuple(make_pass_through_transform(K),
make_pass_through_transform(C0 * Y * X),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}, Sequence<2>{}));
const auto a_e0_e1_k_e2_grid_desc =
transform_tensor_descriptor(a_e0_k_e2_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(E0, E1)),
make_pass_through_transform(K),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}));
// input tensor
const auto in_n_c0_hip_wip_c1_global_desc = transform_tensor_descriptor(
in_n_c0_hi_wi_c1_global_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C0),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_c0_y_ho_x_wo_c1_global_desc = transform_tensor_descriptor(
in_n_c0_hip_wip_c1_global_desc,
make_tuple(
make_pass_through_transform(N),
make_pass_through_transform(C0),
make_embed_transform(make_tuple(Y, Hop), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wop), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}, Sequence<6>{}));
const auto b_e0_n_ho_wo_e2_grid_desc = transform_tensor_descriptor(
in_n_c0_y_ho_x_wo_c1_global_desc,
make_tuple(make_merge_transform(make_tuple(C0, Y, X)),
make_pass_through_transform(N),
make_pass_through_transform(Hop),
make_pass_through_transform(Wop),
make_pass_through_transform(E2)),
make_tuple(
Sequence<1, 2, 4>{}, Sequence<0>{}, Sequence<3>{}, Sequence<5>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto b_e0_e1_n_ho_wo_e2_grid_desc = transform_tensor_descriptor(
b_e0_n_ho_wo_e2_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(E0, E1)),
make_pass_through_transform(N),
make_pass_through_transform(Hop),
make_pass_through_transform(Wop),
make_pass_through_transform(E2)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}, Sequence<5>{}));
// output tensor
const auto c_k_n_hop_wop_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N, K0, Ho, Wo, K1)),
make_tuple(make_merge_transform(make_tuple(K0, K1)),
make_pass_through_transform(N),
make_pad_transform(Ho, 0, OutRightPadH),
make_pad_transform(Wo, 0, OutRightPadW)),
make_tuple(Sequence<1, 4>{}, Sequence<0>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
std::cerr << "Hop = " << Hop << " Wop = " << Wop << std::endl;
if(!((K % KPerBlock) == 0 && (Hop % HoPerBlock) == 0 && (Wop % WoPerBlock) == 0 &&
(E1 % E1PerBlock) == 0))
{
throw std::runtime_error("wrong! GEMM size no divisible");
}
// hack to control index calculation when iterating over a_k_m_global tensor
constexpr auto a_e0_e1_k_e2_global_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0>{}));
constexpr auto a_e0_e1_k_e2_global_move_slice_window_step_hack =
Sequence<0, 0, 0, 0, 0, 0, 0>{};
constexpr auto b_e0_e1_n_ho_wo_e2_global_step_hacks = make_tuple(
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}));
constexpr auto b_e0_e1_n_ho_wo_e2_global_move_slice_window_step_hack =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{};
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
// hack for NKHW format
constexpr auto c_k_n_ho_wo_global_tensor_step_hacks =
make_tuple(make_tuple(Sequence<0, 1, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{}),
make_tuple(Sequence<0, 2, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{}));
// GEMM
using GridwiseGemm = GridwiseGemmDlops_km_kn_mn_v3<
BlockSize,
FloatAB,
FloatAcc,
FloatC,
InMemoryDataOperationEnum_t::Set,
decltype(a_e0_e1_k_e2_grid_desc),
decltype(b_e0_e1_n_ho_wo_e2_grid_desc),
decltype(c_k_n_hop_wop_grid_desc),
E1,
E2,
KPerBlock,
HoPerBlock,
WoPerBlock,
E1PerBlock,
KPerThread,
HoPerThread,
WoPerThread,
EPerThread,
ABlockTransferThreadSliceLengths_E0_E1_K_E2,
ABlockTransferThreadClusterLengths_E0_E1_K_E2,
Sequence<2, 0, 1, 3>,
Sequence<2, 0, 1, 3>,
3,
ABlockTransferSrcScalarPerVector_E2,
ABlockTransferDstScalarPerVector_E2,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 3, 4, 1, 5>,
5,
BThreadTransferSrcScalarPerVector_E2,
false, // don't move back src coordinate after threadwise copy, which will be fused with
// MoveSrcSliceWindow() to save addr computation
Sequence<2, 3, 1, 0>,
0,
CThreadTransferDstScalarPerVector_K,
decltype(a_e0_e1_k_e2_global_step_hacks),
decltype(b_e0_e1_n_ho_wo_e2_global_step_hacks),
decltype(c_k_n_ho_wo_global_tensor_step_hacks),
decltype(a_e0_e1_k_e2_global_move_slice_window_step_hack),
decltype(b_e0_e1_n_ho_wo_e2_global_move_slice_window_step_hack)>;
using AGridDesc_E0_E1_K_E2 = decltype(a_e0_e1_k_e2_grid_desc);
using BGridDesc_E0_E1_N_Ho_Wo_E2 = decltype(b_e0_e1_n_ho_wo_e2_grid_desc);
using CGridDesc_K_N_Ho_Wo = decltype(c_k_n_hop_wop_grid_desc);
const auto grid_size = (K / KPerBlock) * (Hop / HoPerBlock) * (Wop / WoPerBlock) * N;
const bool has_main_k_block_loop = (E1 + E1PerBlock) / (2 * E1PerBlock) > 1;
const bool has_double_tail_k_block_loop = (E1 / E1PerBlock) % 2 == 0;
std::cerr << "has_main_k_block_loop = " << has_main_k_block_loop
<< " has_double_tail_k_block_loop = " << has_double_tail_k_block_loop
<< std::endl;
const auto c_blockid_to_k_n_ho_wo_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(I0, I0))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
using CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo =
decltype(c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
float ave_time = 0;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
else
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_e0_e1_k_e2_grid_desc,
b_e0_e1_n_ho_wo_e2_grid_desc,
c_k_n_hop_wop_grid_desc,
c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
}
return ave_time;
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
DeviceMem a_e0_e1_k_e2_grid_desc_dev_buf(sizeof(AGridDesc_E0_E1_K_E2));
DeviceMem b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf(sizeof(BGridDesc_E0_E1_N_Ho_Wo_E2));
DeviceMem c_k_n_hop_wop_grid_desc_dev_buf(sizeof(CGridDesc_K_N_Ho_Wo));
DeviceMem c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf(
sizeof(CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo));
a_e0_e1_k_e2_grid_desc_dev_buf.ToDevice(&a_e0_e1_k_e2_grid_desc);
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.ToDevice(&b_e0_e1_n_ho_wo_e2_grid_desc);
c_k_n_hop_wop_grid_desc_dev_buf.ToDevice(&c_k_n_hop_wop_grid_desc);
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.ToDevice(
&c_blockid_to_k_n_ho_wo_block_cluster_adaptor);
float ave_time = 0;
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
true,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
else
{
const auto kernel =
kernel_gemm_dlops_v2<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AGridDesc_E0_E1_K_E2>,
remove_reference_t<BGridDesc_E0_E1_N_Ho_Wo_E2>,
remove_reference_t<CGridDesc_K_N_Ho_Wo>,
remove_reference_t<CBlockIdToBlockClusterAdaptor_K_N_Ho_Wo>,
false,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(
a_e0_e1_k_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
b_e0_e1_n_ho_wo_e2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_k_n_hop_wop_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_blockid_to_k_n_ho_wo_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
}
return ave_time;
#endif
}
};
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment