Commit ed068043 authored by Jing Zhang's avatar Jing Zhang
Browse files

merged develop

parents 41852668 e823d518
......@@ -15,6 +15,17 @@ struct GeneratorTensor_1
}
};
struct GeneratorTensor_0
{
int value = 0;
template <typename... Is>
float operator()(Is...)
{
return value;
}
};
struct GeneratorTensor_2
{
int min_value = 0;
......
......@@ -34,6 +34,21 @@ const std::vector<std::size_t>& HostTensorDescriptor::GetLengths() const { retur
const std::vector<std::size_t>& HostTensorDescriptor::GetStrides() const { return mStrides; }
std::ostream& operator<<(std::ostream& os, const HostTensorDescriptor& desc)
{
os << "dim " << desc.GetNumOfDimension() << ", ";
os << "lengths {";
LogRange(os, desc.GetLengths(), ", ");
os << "}, ";
os << "strides {";
LogRange(os, desc.GetStrides(), ", ");
os << "}";
return os;
}
void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream& os)
{
os << "dim " << desc.GetNumOfDimension() << ", ";
......
include_directories(BEFORE
include
${PROJECT_SOURCE_DIR}/host/host_tensor/include
${PROJECT_SOURCE_DIR}/device/include
${PROJECT_SOURCE_DIR}/device_operation/include
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/composable_kernel/include
${PROJECT_SOURCE_DIR}/composable_kernel/include/utility
${PROJECT_SOURCE_DIR}/composable_kernel/include/tensor_description
${PROJECT_SOURCE_DIR}/composable_kernel/include/tensor_operation
${PROJECT_SOURCE_DIR}/composable_kernel/include/problem_transform
${PROJECT_SOURCE_DIR}/external/rocm/include
)
# device_gemm_instance
set(DEVICE_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_km_kn_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_km_nk_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_km_kn_mn.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_km_nk_mn.cpp;
)
add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE})
target_include_directories(device_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_compile_features(device_gemm_instance PUBLIC)
set_target_properties(device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
install(TARGETS device_gemm_instance LIBRARY DESTINATION lib)
# device_conv_instance
set(DEVICE_CONV_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/device_conv_xdl_instance_f32_f32_f32_nhwc_kyxc_nhwk.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_conv_xdl_instance_f16_f16_f16_nhwc_kyxc_nhwk.cpp;
)
add_library(device_conv_instance SHARED ${DEVICE_CONV_INSTANCE_SOURCE})
target_include_directories(device_conv_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_compile_features(device_conv_instance PUBLIC)
set_target_properties(device_conv_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
install(TARGETS device_conv_instance LIBRARY DESTINATION lib)
# ck_profiler
set(PROFILER_SOURCE profiler.cpp gemm_profiler.cpp conv_profiler.cpp)
add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance device_conv_instance)
## Docker script
```bash
docker run \
-it \
--rm \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```ckProfiler```
```bash
mkdir build && cd build
```
```bash
# Need to Specify target ID, example below is gfx908
cmake \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 " \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
```bash
make -j ckProfiler
```
## Profile GEMM kernels
```bash
#arg1: tensor operation (gemm=GEMM)
#arg2: data type (0=fp32, 1=fp16)
#arg3: matrix layout (0=NN, 1=NT, 2=TN, 3=TT)
#arg4: verification (0=no, 1=yes)
#arg5: initialization (0=no init, 1=integer value, 2=decimal value)
#arg6: print matrix value (0=no, 1=yes)
#arg7: run kernel # of times (>1)
#arg8 to 13: M, N, K, StrideA, StrideB, StrideC
##################### op datatype layout verify init log repeat M___ N___ K___ StrideA StrideB StrideC
./profiler/ckProfiler gemm 1 1 1 1 0 5 3840 4096 4096 4096 4096 4096
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```bash
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
....
Best Perf: 1.1933 ms, 107.977 TFlops, 79.0848 GB/s
```
## Profile forward convolution kernels
```bash
#arg1: tensor operation (conv=Convolution)
#arg2: data type (0=fp32, 1=fp16)
#arg3: input tensor layout (0=NCHW, 1=NHWC)
#arg4: weight tensor layout (0=KCYX, 1=KYXC)
#arg5: output tensor layout (0=NKHW, 1=NHWK)
#arg6: verification (0=no, 1=yes)
#arg7: initialization (0=no init, 1=integer value, 2=decimal value)
#arg8: print matrix value (0=no, 1=yes)
#arg9: run kernel # of times (>1)
#arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
##################### op datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads
./profiler/ckProfiler conv 1 1 1 1 1 1 0 5 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
....
Best Perf: 1.42509 ms, 102.988 TFlops, 234.086 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv.hpp"
enum ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
enum ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
int conv_profiler(int argc, char* argv[])
{
if(argc != 25)
{
printf("arg1: tensor operation (conv=Convolution)\n");
printf("arg2: data type (0=fp32, 1=fp16)\n");
printf("arg3: input tensor layout (0=NCHW, 1=NHWC)\n");
printf("arg4: weight tensor layout (0=KCYX, 1=KYXC)\n");
printf("arg5: output tensor layout (0=NKHW, 1=NHWK)\n");
printf("arg6: verification (0=no, 1=yes)\n");
printf("arg7: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg8: print matrix value (0=no, 1=yes)\n");
printf("arg9: run kernel # of times (>1)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const int nrepeat = std::stoi(argv[9]);
const ck::index_t N = std::stoi(argv[10]);
const ck::index_t K = std::stoi(argv[11]);
const ck::index_t C = std::stoi(argv[12]);
const ck::index_t Y = std::stoi(argv[13]);
const ck::index_t X = std::stoi(argv[14]);
const ck::index_t Hi = std::stoi(argv[15]);
const ck::index_t Wi = std::stoi(argv[16]);
const ck::index_t conv_stride_h = std::stoi(argv[17]);
const ck::index_t conv_stride_w = std::stoi(argv[18]);
const ck::index_t conv_dilation_h = std::stoi(argv[19]);
const ck::index_t conv_dilation_w = std::stoi(argv[20]);
const ck::index_t in_left_pad_h = std::stoi(argv[21]);
const ck::index_t in_left_pad_w = std::stoi(argv[22]);
const ck::index_t in_right_pad_h = std::stoi(argv[23]);
const ck::index_t in_right_pad_w = std::stoi(argv[24]);
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
}
else
{
throw std::runtime_error("wrong! this Conv data_type & layout is not implemented");
}
return 1;
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "gemm_common.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"
#include "profile_gemm.hpp"
int gemm_profiler(int argc, char* argv[])
{
if(argc != 14)
{
printf("arg1: tensor operation (gemm=GEMM)\n");
printf("arg2: data type (0=fp32, 1=fp16)\n");
printf("arg3: matrix layout (0=NN, 1=NT, 2=TN, 3=TT)\n");
printf("arg4: verification (0=no, 1=yes)\n");
printf("arg5: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg6: print matrix value (0=no, 1=yes)\n");
printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const int nrepeat = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification, init_method, do_log, nrepeat, M, N, K, StrideA, StrideB, StrideC);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
}
return 1;
}
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv.hpp"
#include "device_conv_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv_instance {
template <>
void add_device_conv_fwd_instance<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
std::vector<ck::tensor_operation::device::DeviceConvFwdPtr>&);
template <>
void add_device_conv_fwd_instance<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
std::vector<ck::tensor_operation::device::DeviceConvFwdPtr>&);
} // namespace device_conv_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
void profile_conv(int do_verification,
int init_method,
bool do_log,
int nrepeat,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
const ck::index_t Y = filter_spatial_lengths[0];
const ck::index_t X = filter_spatial_lengths[1];
const ck::index_t Hi = input_spatial_lengths[0];
const ck::index_t Wi = input_spatial_lengths[1];
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5});
}
if(do_verification)
{
host_conv_nchw_kcyx_nkhw(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// add device Conv instances
std::vector<ck::tensor_operation::device::DeviceConvFwdPtr> conv_ptrs;
ck::tensor_operation::device::device_conv_instance::add_device_conv_fwd_instance<2,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
conv_ptrs);
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(tflops > best_tflops)
{
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "wei: ", wei_k_c_y_x.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_host : ", out_n_k_ho_wo_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_device: ", out_n_k_ho_wo_device_result.mData, ",")
<< std::endl;
}
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s" << std::endl;
}
} // namespace profiler
} // namespace ck
#pragma once
#include "device_gemm_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_gemm(int do_verification,
int init_method,
bool do_log,
int nrepeat,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5});
}
if(do_verification)
{
host_gemm_mk_kn_mn(a_m_k, b_k_n, c_m_n_host_result);
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::DeviceGemmPtr> gemm_ptrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_instance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>(
gemm_ptrs);
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(tflops > best_tflops)
{
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
check_error(c_m_n_host_result, c_m_n_device_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << "this device GEMM instance does not support this GEMM problem"
<< std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s" << std::endl;
}
} // namespace profiler
} // namespace ck
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
int gemm_profiler(int, char*[]);
int conv_profiler(int, char*[]);
int main(int argc, char* argv[])
{
if(strcmp(argv[1], "gemm") == 0)
{
return gemm_profiler(argc, argv);
}
else if(strcmp(argv[1], "conv") == 0)
{
return conv_profiler(argc, argv);
}
else
{
printf("arg1: tensor operation (gemm=GEMM, conv=Convolution)\n");
return 0;
}
}
......@@ -8,11 +8,11 @@ MY_PROJECT_INSTALL=../install.dir
cmake \
-D CMAKE_INSTALL_PREFIX=${MY_PROJECT_INSTALL} \
-D HALF_INCLUDE_DIR="/root/workspace/external/half/include" \
-D BUILD_DEV=ON \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 -O3 --amdgpu-target=gfx908 -mllvm --amdgpu-spill-vgpr-to-agpr=0 -gline-tables-only -save-temps=$PWD" \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 -ftemplate-backtrace-limit=0 -mllvm --amdgpu-spill-vgpr-to-agpr=0 -gline-tables-only -save-temps=$PWD" \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
${MY_PROJECT_SOURCE}
#!/bin/bash
## GPU visibility
export HIP_VISIBLE_DEVICES=0
make -j conv_fwd_driver_offline
#make -j conv_bwd_driver_offline
#make -j conv_wrw_driver_offline
DRIVER="./host/driver_offline/conv_fwd_driver_offline"
#DRIVER="./host/driver_offline/conv_bwd_driver_offline"
#DRIVER="./host/driver_offline/conv_wrw_driver_offline"
LAYOUT=$1
ALGO=$2
VERIFY=$3
INIT=$4
LOG=$5
REPEAT=$6
DESIRED_GRID_SIZE=$7
######### layout algo verify init log repeat N__ K___ C___ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads Desired_grid_size__
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 192 3 3 71 71 2 2 1 1 1 1 1 1 $DESIRED_GRID_SIZE
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 7 17 17 1 1 1 1 0 3 0 3 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 14 14 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
$DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 192 3 3 35 35 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 30 30 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 16 16 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
$DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 1024 1 1 14 14 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 2048 1 1 7 7 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
$DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 1 1 14 14 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
$DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 32 256 3 3 1 1 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 32 256 1 1 1 1 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
$DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 64 1 1 2 2 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 128 1 1 2 2 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
# Resnet50
######### layout algo verify init log repeat N__ K___ C___ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads Desired_grid_size__
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 1024 1 1 14 14 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 1024 1 1 14 14 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 128 3 3 28 28 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 128 1 1 28 28 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 128 3 3 58 58 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 2048 1 1 7 7 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 1024 256 1 1 14 14 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 30 30 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 256 1 1 56 56 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 256 1 1 56 56 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 256 1 1 56 56 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 16 16 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 1024 512 1 1 28 28 2 2 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 512 1 1 28 28 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 512 1 1 28 28 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 512 1 1 7 7 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 64 1 1 56 56 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 64 1 1 56 56 1 1 1 1 0 0 0 0 $DESIRED_GRID_SIZE
##DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 64 3 3 56 56 1 1 1 1 1 1 1 1 $DESIRED_GRID_SIZE
#!/bin/bash
## GPU visibility
export HIP_VISIBLE_DEVICES=1
make -j gemm_xdl
DRIVER="./example/gemm_xdl"
VERIFY=$1
INIT=$2
LOG=$3
REPEAT=$4
######### verify init log repeat M___ N___ K___ StrideA StrideB StrideC
#$DRIVER $VERIFY $INIT $LOG $REPEAT 960 1024 1024 1024 1024 1024
#$DRIVER $VERIFY $INIT $LOG $REPEAT 1024 1024 1024 1024 1024 1024
#$DRIVER $VERIFY $INIT $LOG $REPEAT 1920 2048 2048 2048 2048 2048
$DRIVER $VERIFY $INIT $LOG $REPEAT 3840 4096 4096 4096 4096 4096
#$DRIVER $VERIFY $INIT $LOG $REPEAT 7680 8192 8192 8192 8192 8192
#!/bin/bash
## GPU visibility
export HIP_VISIBLE_DEVICES=0
make -j gemm_driver_offline
DRIVER="./host/driver_offline/gemm_driver_offline"
LAYOUT=$1
ALGO=$2
VERIFY=$3
INIT=$4
LOG=$5
REPEAT=$6
M01=$7
N01=$8
######### layout algo verify init log repeat M___ N___ K___ M01_ N01_
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 960 1024 1024 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 1024 1024 1024 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 1920 2048 2048 $M01 $N01
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 3840 4096 4096 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 7680 8192 8192 $M01 $N01
#!/bin/bash
## GPU visibility
export ROCR_VISIBLE_DEVICE=0
export GPU_DEVICE_ORDINAL=0
make -j conv_fwd_driver_offline
#make -j conv_bwd_driver_offline
#make -j conv_wrw_driver_offline
#make -j gemm_driver_offline
DRIVER="./host/driver_offline/conv_fwd_driver_offline"
LAYOUT=$1
ALGO=$2
VERIFY=$3
INIT=$4
LOG=$5
REPEAT=$6
#M01=$7
#N01=$8
KBATCH=$7
######### layout algo verify init log repeat N__ K___ C___ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 192 3 3 71 71 2 2 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 7 17 17 1 1 1 1 0 3 0 3
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 14 14 1 1 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 192 3 3 35 35 2 2 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 30 30 2 2 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 16 16 2 2 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 128 3 3 14 14 1 1 1 1 1 1 1 1
######### layout algo verify init log repeat M___ N___ K___
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 960 1024 1024 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 1920 2048 2048 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 3840 4096 4096 $M01 $N01
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 7680 8192 8192 $M01 $N01
# Resnet50
######### layout algo verify init log repeat N__ K___ C___ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 128 3 3 28 28 1 1 1 1 1 1 1 1
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 128 3 3 58 58 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 30 30 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 256 1 1 56 56 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 16 16 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 1024 512 1 1 28 28 2 2 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 128 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 64 64 3 3 56 56 1 1 1 1 1 1 1 1
# 256x128x32 c64
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 1 14 14 1 1 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 1024 1 1 14 14 1 1 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 28 28 1 1 1 1 1 1 1 1 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 128 1 1 28 28 1 1 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 58 58 2 2 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 2048 1 1 7 7 1 1 1 1 0 0 0 0 14
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 1024 256 1 1 14 14 1 1 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 256 3 3 14 14 1 1 1 1 1 1 1 1 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 256 3 3 30 30 2 2 1 1 0 0 0 0 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 256 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 256 1 1 56 56 2 2 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 256 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 512 3 3 16 16 2 2 1 1 0 0 0 0 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 1024 512 1 1 28 28 2 2 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 512 1 1 28 28 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 512 1 1 28 28 1 1 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 2048 512 1 1 7 7 1 1 1 1 0 0 0 0 14
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 512 3 3 7 7 1 1 1 1 1 1 1 1 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 64 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 3 3 56 56 1 1 1 1 1 1 1 1 $KBATCH
# 128x128x32 c64
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 2048 1024 1 1 14 14 2 2 1 1 0 0 0 0 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 1 14 14 1 1 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 1024 1 1 14 14 1 1 1 1 0 0 0 0 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 28 28 1 1 1 1 1 1 1 1 112
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 128 1 1 28 28 1 1 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 58 58 2 2 1 1 0 0 0 0 112
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 2048 1 1 7 7 1 1 1 1 0 0 0 0 14
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 1024 256 1 1 14 14 1 1 1 1 0 0 0 0 56
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 256 3 3 14 14 1 1 1 1 1 1 1 1 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 256 3 3 30 30 2 2 1 1 0 0 0 0 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 256 1 1 56 56 1 1 1 1 0 0 0 0 448
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 256 1 1 56 56 2 2 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 256 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 512 3 3 16 16 2 2 1 1 0 0 0 0 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 1024 512 1 1 28 28 2 2 1 1 0 0 0 0 28
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 512 1 1 28 28 1 1 1 1 0 0 0 0 224
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 512 1 1 28 28 1 1 1 1 0 0 0 0 112
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 2048 512 1 1 7 7 1 1 1 1 0 0 0 0 14
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 512 512 3 3 7 7 1 1 1 1 1 1 1 1 7
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 64 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 3 3 56 56 1 1 1 1 1 1 1 1 $KBATCH
# 128x64x32 c64
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 64 1 1 56 56 1 1 1 1 0 0 0 0 112
# 64x128x32 c64
$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 256 1 1 56 56 1 1 1 1 0 0 0 0 $KBATCH
# 64x64x32 c32
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 256 1 1 56 56 1 1 1 1 0 0 0 0 112
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 64 1 1 56 56 1 1 1 1 0 0 0 0 112
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 1 1 56 56 1 1 1 1 0 0 0 0 448
#$DRIVER $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 64 64 3 3 56 56 1 1 1 1 1 1 1 1 448
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment