Unverified Commit ec2fbe1f authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-1038

parents bd5f5a0d e8cddfdc
......@@ -9,7 +9,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -52,7 +52,7 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -96,7 +96,7 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -107,7 +107,8 @@ void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
Add_Mul2_TanH_Mul_Clamp>>>&
instances)
{
// dl
add_device_operation_instances(instances,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -96,7 +96,7 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -107,7 +107,8 @@ void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
Add_Mul_TanH_Mul_Clamp>>>&
instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
}
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -94,7 +94,7 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
}
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
......@@ -105,7 +105,8 @@ void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
Add_Mul2_TanH_Mul_Clamp>>>&
instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
}
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -96,7 +96,7 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
}
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -107,7 +107,8 @@ void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
Add_Mul_TanH_Mul_Clamp>>>&
instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
......
......@@ -4,7 +4,7 @@
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
namespace ck {
namespace tensor_operation {
......@@ -26,19 +26,19 @@ using device_grouped_conv2d_xdl_int8_instances =
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>
>;
// clang-format on
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
}
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
......@@ -51,7 +51,7 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
}
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
......
......@@ -6,6 +6,7 @@
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include <unistd.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
......@@ -20,6 +21,7 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/fill.hpp"
namespace ck {
namespace profiler {
......@@ -69,14 +71,17 @@ int profile_gemm_impl(int do_verification,
switch(init_method)
{
case 0: break;
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 0.1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.05, 0.05});
ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck::utils::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
......@@ -130,11 +135,10 @@ int profile_gemm_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_avg_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
int best_instance_id = 0;
int instance_id = 0;
// profile device op instances
for(auto& op_ptr : op_ptrs)
{
......@@ -178,10 +182,8 @@ int profile_gemm_impl(int do_verification,
if(tflops > best_tflops)
{
best_op_name = op_name;
best_instance_id = instance_id;
best_tflops = tflops;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
......@@ -205,8 +207,47 @@ int profile_gemm_impl(int do_verification,
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
instance_id++;
}
sleep(2);
// Run the best instance again
{
auto& op_ptr = op_ptrs[best_instance_id];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string op_name = op_ptr->GetTypeString();
float avg_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, time_kernel, 0, 50, 200});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
......@@ -249,9 +290,11 @@ int profile_gemm_impl(int do_verification,
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_avg_time
<< " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << avg_time
<< " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << op_name
<< std::endl;
}
}
return pass ? 0 : 1;
}
......
......@@ -198,7 +198,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
}
};
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_transpose_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct MatrixLayout
{
NCDHW, // 0
NCHWD, // 1
};
enum struct DataType
{
F32_F32_F32_F32_F32, // 0
F16_F16_F16_F16_F16, // 1
};
#define OP_NAME "transpose"
#define OP_DESC "Transpose"
int profile_transpose(int argc, char* argv[])
{
if(argc != 15)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
// printf("arg3: matrix layout (NCDHW -> NDCHW);\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: N, C, D, H, W\n");
exit(1);
}
const auto data_type = static_cast<DataType>(std::stoi(argv[2]));
// const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const bool time_kernel = std::stoi(argv[6]);
std::vector<index_t> lengths = std::stoi(argv[7]);
/**const int N = std::stoi(argv[7]);
const int C = std::stoi(argv[8]);
const int D = std::stoi(argv[9]);
const int H = std::stoi(argv[10]);
const int W = std::stoi(argv[11]);**/
using F32 = float;
using F16 = ck::half_t;
auto profile = [&](auto a_type, auto b_type) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
bool pass = ck::profiler::profile_transpose_impl<ADataType, BDataType>(
do_verification, init_method, do_log, time_kernel, lengths);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F32_F32_F32_F32_F32)
{
return profile(F32{}, F32{});
}
else if(data_type == GemmDataType::F16_F16_F16_F16_F16)
{
return profile(F16{}, F16{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_transpose);
add_gtest_executable(test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp)
target_link_libraries(test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance)
add_gtest_executable(test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_ab_interface PRIVATE utility)
add_gtest_executable(test_grouped_convnd_fwd_multi_d_interface_compatibility test_grouped_convnd_fwd_multi_d_interface_compatibility.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_d_interface_compatibility PRIVATE utility device_grouped_conv3d_fwd_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
template <typename DataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
class TestGroupedConvndFwdMultiABInterfaceBase : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
static constexpr ck::index_t NumAs = 2;
static constexpr ck::index_t NumBs = 2;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = PassThrough;
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
DataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
const ck::utils::conv::ConvParam conv_param{
3, 1, 16, 16, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
void SetUp() override
{
if(!ck::is_xdl_supported())
{
GTEST_SKIP();
}
}
template <typename ADataType, typename BDataType>
bool Run(ADataType as, BDataType bs)
{
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceGroupedConvNDMultiABFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
nullptr,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
return conv.IsSupportedArgument(argument);
}
};
class TestGroupedConvndFwdMultiAInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
float,
ScaleAdd,
PassThrough>
{
};
class TestGroupedConvndFwdMultiBInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
float,
ck::Tuple<float, float>,
PassThrough,
ScaleAdd>
{
};
class TestGroupedConvndFwdMultiABInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
ck::Tuple<float, float>,
ScaleAdd,
ScaleAdd>
{
};
class TestGroupedConvndFwdInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float, float, float, PassThrough, PassThrough>
{
};
TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
const void* b = nullptr;
EXPECT_TRUE(this->template Run(as, b));
}
TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
{
const void* a = nullptr;
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(a, bs));
}
TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(as, bs));
}
TEST_F(TestGroupedConvndFwdInterface, SingleAB)
{
const void* a = nullptr;
const void* b = nullptr;
EXPECT_TRUE(this->template Run(a, b));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
class TestGroupedConvndFwdMultiDInterfaceCompatibility : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
bool Run()
{
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
return op_ptrs.size() != 0;
}
};
TEST_F(TestGroupedConvndFwdMultiDInterfaceCompatibility, CompatibilityTest)
{
EXPECT_TRUE(this->Run());
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment