Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e87f7319
Commit
e87f7319
authored
Jul 18, 2023
by
Jing Zhang
Browse files
dedicated fixed_nk solution
parent
5a5468f4
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
1466 additions
and
673 deletions
+1466
-673
client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
...xample/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
+3
-30
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+5
-1
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+325
-0
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+3
-266
include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
+0
-20
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
...sor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
+61
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+66
-356
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
...tion/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
+1003
-0
No files found.
client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
View file @
e87f7319
...
...
@@ -60,8 +60,6 @@ int main()
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ms
.
push_back
(
256
+
256
*
distrib
(
gen
));
...
...
@@ -71,8 +69,6 @@ int main()
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
...
...
@@ -106,10 +102,6 @@ int main()
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
...
...
@@ -119,23 +111,11 @@ int main()
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideEs
[
i
],
{}});
gemm_descs
.
push_back
({
Ms
[
i
]
,
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideEs
[
i
],
{}});
p_a
.
push_back
(
a_dev_bufs
[
i
].
GetDeviceBuffer
());
p_b
.
push_back
(
b_dev_bufs
[
i
].
GetDeviceBuffer
());
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
({
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
{},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm
<
ALayout
,
...
...
@@ -182,20 +162,13 @@ int main()
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
gemm_desc_workspace
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
//
op_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipMemcpy
(
gemm_desc_workspace
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
(),
StreamConfig
{
nullptr
,
true
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
...
...
example/15_grouped_gemm/CMakeLists.txt
View file @
e87f7319
...
...
@@ -7,6 +7,8 @@ add_example_executable(example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp)
add_example_executable
(
example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fixed_nk_fp16 grouped_gemm_xdl_fixed_nk_fp16.cpp
)
add_dependencies
(
example_grouped_gemm_xdl
example_grouped_gemm_xdl_fp32
...
...
@@ -14,7 +16,9 @@ add_dependencies(example_grouped_gemm_xdl
example_grouped_gemm_xdl_bfp16
example_grouped_gemm_xdl_int8
example_grouped_gemm_multiple_d_dl_fp16
example_grouped_gemm_xdl_splitk_fp16
)
example_grouped_gemm_xdl_splitk_fp16
example_grouped_gemm_xdl_fixed_nk_fp16
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp
)
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
0 → 100644
View file @
e87f7319
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
c_tensors_device
[
i
]
->
SetZero
();
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{}});
grouped_gemm_kernel_args_
.
push_back
({
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
// gemm.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());
hip_check_error
(
hipMemcpy
(
gemm_desc_workspace
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetWorkSpaceSize
(
&
argument
),
hipMemcpyHostToDevice
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
// int main(int argc, char* argv[]) { return !run_grouped_gemm_example(argc, argv); }
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
problem_size
.
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ns
.
push_back
(
768
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
View file @
e87f7319
...
...
@@ -10,7 +10,6 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -47,7 +46,7 @@ using AElementOp = PassThrough;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
...
...
@@ -58,268 +57,6 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
#include "run_grouped_gemm_example.inc"
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
c_tensors_device
[
i
]
->
SetZero
();
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{}});
grouped_gemm_kernel_args_
.
push_back
({
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
// gemm.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());
hip_check_error
(
hipMemcpy
(
gemm_desc_workspace
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetWorkSpaceSize
(
&
argument
),
hipMemcpyHostToDevice
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
// int main(int argc, char* argv[]) { return !run_grouped_gemm_example(argc, argv); }
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
problem_size
.
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ns
.
push_back
(
768
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_gemm_example
(
argc
,
argv
);
}
include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
View file @
e87f7319
...
...
@@ -20,24 +20,6 @@ struct GemmDesc
std
::
vector
<
ck
::
index_t
>
stride_Ds_
;
};
template
<
index_t
NumDTensor
=
0
>
struct
GroupedGemmKernelArgument
{
const
void
*
p_a_grid
;
const
void
*
p_b_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
...
...
@@ -66,8 +48,6 @@ struct DeviceGroupedGemm : public BaseOperator
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
};
}
// namespace device
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
0 → 100644
View file @
e87f7319
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_grouped_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDTensor
=
0
>
struct
GroupedGemmKernelArgument
{
const
void
*
p_a_grid
;
const
void
*
p_b_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmFixedNK
:
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
e87f7319
...
...
@@ -24,13 +24,6 @@ namespace device {
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
...
...
@@ -41,7 +34,6 @@ __global__ void
#endif
kernel_grouped_gemm_xdl
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
...
...
@@ -55,7 +47,6 @@ __global__ void
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
#if 0
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
...
...
@@ -73,14 +64,7 @@ __global__ void
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
#endif
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
#if 0
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
gemm_desc_ptr
[
group_id
].
a_ptr_
,
gemm_desc_ptr
[
group_id
].
b_ptr_
,
...
...
@@ -95,83 +79,6 @@ __global__ void
gemm_desc_ptr
[
group_id
].
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
block_2_etile_map_
);
#else
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
==
0
||
N
==
0
||
K
==
0
)
return
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
#if 0
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
#endif
using
DsDataType
=
ck
::
Tuple
<>
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
};
constexpr
auto
NumDTensor
=
0
;
using
DsGridPointer
=
decltype
(
GridwiseGemm
::
MakeDsGridPointer
());
DsGridPointer
p_ds_grid_
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
auto
m_loops
=
local_b2e_tile_map
.
CalculateMLoops
();
index_t
m_id
=
0
;
do
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
m_id
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
>(
gemm_desc_ptr
[
group_id
].
p_a_grid
,
gemm_desc_ptr
[
group_id
].
p_b_grid
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
block_2_etile_map
);
m_id
+=
1
;
}
while
(
m_id
<
m_loops
);
#endif
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
...
...
@@ -374,162 +281,54 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
struct
GroupedGemmBlock2ETileMap
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
mblock_id_off
=
0
)
GroupedGemmBlock2ETileMap
()
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
mblock_id_off_
=
mblock_id_off
;
block_2_etile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{});
BlockStart_
=
-
1
;
}
GroupedGemmBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
ck
::
index_t
BlockStart
)
{
block_2_etile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n
);
BlockStart_
=
BlockStart
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
));
return
make_tuple
(
idx_bot
[
Number
<
0
>
{}]
+
mblock_id_off_
,
idx_bot
[
Number
<
1
>
{}]);
return
block_2_etile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
I0
]
-
BlockStart_
));
}
// it's actually E-Tile
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
mblock_id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
8
)
:
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateMLoops
()
const
{
return
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
}
__host__
static
constexpr
index_t
CalculateGridSize
(
index_t
/*M*/
,
index_t
N
)
{
const
auto
M0
=
1
;
// math::integer_divide_ceil(M, MPerBlock);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
;
}
template
<
typename
CGridDesc_M_N
>
__host__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
1
;
// math::integer_divide_ceil(M_, MPerBlock_);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
// swallow batch index
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
return
block_2_etile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
__host__
bool
CheckValidity
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
return
block_2_etile_map_
.
CheckValidity
(
e_grid_desc_m_n
);
}
private:
index_t
M_
;
index_t
N_
;
index_t
M01_
;
Block2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
;
};
using
Block2ETileMap
=
BlockToCTileMap_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
const
void
*
a_ptr_
;
const
void
*
b_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
index_t
StrideA_
,
StrideB_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
const
ADataType
*
a_ptr_
;
const
BDataType
*
b_ptr_
;
typename
GridwiseGemm
::
DsGridPointer
ds_ptr_
;
EDataType
*
e_ptr_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
...
...
@@ -545,7 +344,7 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
GroupedGemm
Block2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
,
BlockEnd_
;
};
...
...
@@ -564,36 +363,18 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
{
grid_size_
=
0
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As || 0 != p_As.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Bs || 0 != p_Bs.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())))
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Ds || 0 != p_Ds.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Es"
);
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/c.size"
);
}
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
skipped_group_count_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
...
...
@@ -604,17 +385,23 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
a_mtx_mraw_kraw_
.
emplace_back
(
M
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
if
(
M
==
0
)
{
skipped_group_count_
++
;
continue
;
}
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
// pointer
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid
{}
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid
[
j
]
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
p_ds_grid
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
});
// tensor descriptors for problem definiton
...
...
@@ -623,16 +410,16 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
DsGridDesc_M_N
ds_grid_desc_m_n
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideC
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
...
...
@@ -640,26 +427,24 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideC
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
std
::
cout
<<
"grp id: "
<<
group_id
<<
" grid_size: "
<<
grid_size_grp
<<
std
::
endl
;
const
index_t
grid_size_grp
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
0
)
.
block_2_etile_map_
.
CalculateGridSize
(
e_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
// block-to-e-tile map
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
loc
al_b2c_
tile_map
))
b
loc
k_2_e
tile_map
))
{
// tensor descriptors for block/thread-wise copy
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
...
...
@@ -676,17 +461,10 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
e_grid_desc_m_n
);
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
p_As
.
size
()
==
0
?
nullptr
:
p_As
[
i
],
p_Bs
.
size
()
==
0
?
nullptr
:
p_Bs
[
i
],
GemmBiasTransKernelArg
{
static_cast
<
const
ADataType
*>
(
p_As
[
i
]
)
,
static_cast
<
const
BDataType
*>
(
p_Bs
[
i
]
)
,
p_ds_grid
,
p_Es
[
i
],
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
static_cast
<
EDataType
*>
(
p_Es
[
i
]),
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
...
...
@@ -695,17 +473,16 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
loc
al_b2c_
tile_map
,
b
loc
k_2_e
tile_map
,
BlockStart
,
BlockEnd
});
}
group_id
++
;
}
}
// private:
index_t
group_count_
;
index_t
skipped_group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
...
...
@@ -715,8 +492,6 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
};
...
...
@@ -729,12 +504,6 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
{
bool
has_main_k_block_loop
=
true
;
#if 1
std
::
vector
<
GroupedGemmKernelArgument
<
NumDTensor
>>
grouped_gemm_kernel_args
;
grouped_gemm_kernel_args
.
reserve
(
arg
.
gemm_desc_kernel_arg_
.
size
());
#endif
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
#if DEBUG_LOG
...
...
@@ -777,81 +546,33 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
#if 1
grouped_gemm_kernel_args
.
push_back
(
GroupedGemmKernelArgument
<
NumDTensor
>
{
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
M_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
N_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideA_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideB_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideDs_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideE_
});
#endif
}
hipGetErrorString
(
hipMemcpyWithStream
(
arg
.
p_workspace_
,
arg
.
gemm_desc_kernel_arg_
.
data
(),
arg
.
gemm_desc_kernel_arg_
.
size
()
*
sizeof
(
GemmBiasTransKernelArg
),
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
GemmBiasTransKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
const
index_t
grid_size_grp
=
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockEnd_
-
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockStart_
;
const
void
*
kernel_args_dev
=
nullptr
;
if
(
arg
.
grouped_gemm_kernel_args_dev
!=
nullptr
)
{
kernel_args_dev
=
arg
.
grouped_gemm_kernel_args_dev
;
}
else
{
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
if
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! p_a/b/c_grid is nullptr"
);
}
}
hipGetErrorString
(
hipMemcpyWithStream
(
arg
.
p_workspace_
,
grouped_gemm_kernel_args
.
data
(),
grouped_gemm_kernel_args
.
size
()
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
),
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
kernel_args_dev
=
arg
.
p_workspace_
;
}
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
kernel_args_dev
),
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
grid_size_grp
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
...
...
@@ -879,7 +600,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
return
false
;
}
...
...
@@ -979,21 +701,9 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
return
str
.
str
();
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GemmBiasTransKernelArg
);
}
};
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
0 → 100644
View file @
e87f7319
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_fixed_nk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
#if 0
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].BlockStart_ &&
block_id < gemm_desc_ptr[group_id].BlockEnd_)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].BlockStart_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
#endif
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
#if 0
GridwiseGemm::template Run<HasMainKBlockLoop>(
gemm_desc_ptr[group_id].a_ptr_,
gemm_desc_ptr[group_id].b_ptr_,
gemm_desc_ptr[group_id].ds_ptr_,
gemm_desc_ptr[group_id].e_ptr_,
p_shared,
a_element_op,
b_element_op,
c_element_op,
gemm_desc_ptr[group_id].a_grid_desc_ak0_m_ak1_,
gemm_desc_ptr[group_id].b_grid_desc_bk0_n_bk1_,
gemm_desc_ptr[group_id].ds_grid_desc_mblock_mperblock_nblock_nperblock_,
gemm_desc_ptr[group_id].e_grid_desc_mblock_mperblock_nblock_nperblock_,
gemm_desc_ptr[group_id].block_2_etile_map_);
#else
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
==
0
||
N
==
0
||
K
==
0
)
return
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
#if 0
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
#endif
using
DsDataType
=
ck
::
Tuple
<>
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
};
constexpr
auto
NumDTensor
=
0
;
using
DsGridPointer
=
decltype
(
GridwiseGemm
::
MakeDsGridPointer
());
DsGridPointer
p_ds_grid_
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
auto
m_loops
=
local_b2e_tile_map
.
CalculateMLoops
();
index_t
m_id
=
0
;
do
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
m_id
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
>(
gemm_desc_ptr
[
group_id
].
p_a_grid
,
gemm_desc_ptr
[
group_id
].
p_b_grid
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
block_2_etile_map
);
m_id
+=
1
;
}
while
(
m_id
<
m_loops
);
#endif
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
#endif
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl_Fixed_NK
:
public
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl_Fixed_NK
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumPrefetch
,
// NumGemmKPrefetchStage
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
mblock_id_off
=
0
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
mblock_id_off_
=
mblock_id_off
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
));
return
make_tuple
(
idx_bot
[
Number
<
0
>
{}]
+
mblock_id_off_
,
idx_bot
[
Number
<
1
>
{}]);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
mblock_id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
8
)
:
BlockToCTileMap_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateMLoops
()
const
{
return
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
}
__host__
static
constexpr
index_t
CalculateGridSize
(
index_t
/*M*/
,
index_t
N
)
{
const
auto
M0
=
1
;
// math::integer_divide_ceil(M, MPerBlock);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
;
}
template
<
typename
CGridDesc_M_N
>
__host__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
1
;
// math::integer_divide_ceil(M_, MPerBlock_);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
// swallow batch index
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t
M_
;
index_t
N_
;
index_t
M01_
;
};
using
Block2ETileMap
=
BlockToCTileMap_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
const
void
*
a_ptr_
;
const
void
*
b_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
index_t
StrideA_
,
StrideB_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
,
BlockEnd_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As || 0 != p_As.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Bs || 0 != p_Bs.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Ds || 0 != p_Ds.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Es"
);
}
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
a_mtx_mraw_kraw_
.
emplace_back
(
M
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
// pointer
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid
[
j
]
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
});
// tensor descriptors for problem definiton
const
auto
a_grid_desc_m_k
=
DeviceOp
::
MakeAGridDescriptor_M_K
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_n_k
=
DeviceOp
::
MakeBGridDescriptor_N_K
(
K
,
N
,
StrideB
);
DsGridDesc_M_N
ds_grid_desc_m_n
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideC
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
std
::
cout
<<
"grp id: "
<<
group_id
<<
" grid_size: "
<<
grid_size_grp
<<
std
::
endl
;
const
index_t
BlockStart
=
grid_size_
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
local_b2c_tile_map
))
{
// tensor descriptors for block/thread-wise copy
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
p_As
.
size
()
==
0
?
nullptr
:
p_As
[
i
],
p_Bs
.
size
()
==
0
?
nullptr
:
p_Bs
[
i
],
p_ds_grid
,
p_Es
[
i
],
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
local_b2c_tile_map
,
BlockStart
,
BlockEnd
});
}
group_id
++
;
}
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
#if 1
std
::
vector
<
GroupedGemmKernelArgument
<
NumDTensor
>>
grouped_gemm_kernel_args
;
grouped_gemm_kernel_args
.
reserve
(
arg
.
gemm_desc_kernel_arg_
.
size
());
#endif
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
#if DEBUG_LOG
std
::
cout
<<
"group: "
<<
i
<<
" arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.b_grid_desc_bk0_n_bk1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.e_grid_desc_m_n_{ "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_m_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_n_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
const
auto
K
=
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
#if 1
grouped_gemm_kernel_args
.
push_back
(
GroupedGemmKernelArgument
<
NumDTensor
>
{
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
M_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
N_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideA_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideB_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideDs_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
StrideE_
});
#endif
}
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_fixed_nk
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
const
index_t
grid_size_grp
=
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockEnd_
-
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockStart_
;
const
void
*
kernel_args_dev
=
nullptr
;
if
(
arg
.
grouped_gemm_kernel_args_dev
!=
nullptr
)
{
kernel_args_dev
=
arg
.
grouped_gemm_kernel_args_dev
;
}
else
{
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
if
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! p_a/b/c_grid is nullptr"
);
}
}
hipGetErrorString
(
hipMemcpyWithStream
(
arg
.
p_workspace_
,
grouped_gemm_kernel_args
.
data
(),
grouped_gemm_kernel_args
.
size
()
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
),
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
kernel_args_dev
=
arg
.
p_workspace_
;
}
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
kernel_args_dev
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
grid_size_grp
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if
constexpr
(
GemmSpec
!=
GemmSpecialization
::
Default
)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const
auto
a_raw_vector_dim
=
ABlockTransferSrcVectorDim
!=
1
?
1
:
0
;
const
auto
b_raw_vector_dim
=
BBlockTransferSrcVectorDim
!=
1
?
1
:
0
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
const
auto
a_vector_dim
=
arg
.
a_mtx_mraw_kraw_
[
i
].
At
(
Number
<
a_raw_vector_dim
>
{});
const
auto
b_vector_dim
=
arg
.
b_mtx_nraw_kraw_
[
i
].
At
(
Number
<
b_raw_vector_dim
>
{});
supported
=
supported
&
(
a_vector_dim
%
ABlockTransferSrcScalarPerVector
==
0
);
supported
=
supported
&
(
b_vector_dim
%
BBlockTransferSrcScalarPerVector
==
0
);
}
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl_Fixed_NK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment