Unverified Commit e7be2fe8 authored by pmaybank's avatar pmaybank Committed by GitHub
Browse files

Merge branch 'develop' into sphinx_doc

parents f68fa79a f7d28f3e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/utility/math_v2.hpp"
#include "ck/utility/ignore.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim>
struct ReferenceBatchNormFwd : public device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumBatchNormReduceDim>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, NumInvariantDim> bnScaleStrides,
const std::array<index_t, NumInvariantDim> bnBiasStrides,
const std::array<index_t, NumInvariantDim> bnMeanVarStrides,
const XDataType* p_x,
const ScaleDataType* bnScale,
const BiasDataType* bnBias,
double epsilon,
const YElementwiseOp y_elementwise_op,
YDataType* p_y,
MeanVarDataType* resultSaveMean,
MeanVarDataType* resultSaveInvVariance,
double averageFactor,
MeanVarDataType* resultRunningMean,
MeanVarDataType* resultRunningVariance)
: reduceDims_(reduceDims),
bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnBiasStrides_(bnBiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
bnScale_(bnScale),
bnBias_(bnBias),
y_elementwise_op_(y_elementwise_op),
p_y_(p_y),
resultSaveMean_(resultSaveMean),
resultSaveInvVariance_(resultSaveInvVariance),
resultRunningMean_(resultRunningMean),
resultRunningVariance_(resultRunningVariance)
{
using ck::host_common::get_index_set;
if(std::any_of(
reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
// get invariant_dims[] and invariant_lengths[]
for(int dim = 0, i = 0; dim < Rank; dim++)
if(std::none_of(
reduceDims.begin(), reduceDims.end(), [&](int d) { return d == dim; }))
{
invariantDims_[i] = dim;
invariant_lengths_[i] = xyLengths[dim];
i++;
};
// get reduce_lengths_[]
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims[j];
reduce_lengths_[i++] = xyLengths[dim];
};
for(int i = 0; i < NumInvariantDim; i++)
if(invariant_lengths_[i] != bnScaleBiasMeanVarLengths_[i])
throw std::runtime_error("Invalid lengths parameters!");
for(int j = 0, i = 0; j < NumInvariantDim; j++)
{
int dim = invariantDims_[j];
x_invariant_strides_[i] = xStrides[dim];
y_invariant_strides_[i] = yStrides[dim];
i++;
};
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims_[j];
x_reduce_strides_[i] = xStrides[dim];
y_reduce_strides_[i] = yStrides[dim];
i++;
};
invariant_index_set_ = get_index_set<NumInvariantDim>(invariant_lengths_);
reduce_index_set_ = get_index_set<NumBatchNormReduceDim>(reduce_lengths_);
epsilon_ = type_convert<AccDataType>(epsilon);
averageFactor_ = type_convert<AccDataType>(averageFactor);
resultSave = (resultSaveMean != nullptr && resultSaveInvVariance != nullptr);
resultRunning = (resultRunningMean != nullptr && resultRunningVariance != nullptr);
}
std::array<int, NumBatchNormReduceDim> reduceDims_;
std::array<int, NumInvariantDim> invariantDims_;
std::array<index_t, NumInvariantDim> invariant_lengths_;
std::array<index_t, NumBatchNormReduceDim> reduce_lengths_;
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths_;
const std::array<index_t, NumInvariantDim> bnScaleStrides_;
const std::array<index_t, NumInvariantDim> bnBiasStrides_;
const std::array<index_t, NumInvariantDim> bnMeanVarStrides_;
std::array<index_t, NumInvariantDim> x_invariant_strides_;
std::array<index_t, NumInvariantDim> y_invariant_strides_;
std::array<index_t, NumBatchNormReduceDim> x_reduce_strides_;
std::array<index_t, NumBatchNormReduceDim> y_reduce_strides_;
const XDataType* p_x_;
const ScaleDataType* bnScale_;
const BiasDataType* bnBias_;
const YElementwiseOp y_elementwise_op_;
YDataType* p_y_;
MeanVarDataType* resultSaveMean_;
MeanVarDataType* resultSaveInvVariance_;
MeanVarDataType* resultRunningMean_;
MeanVarDataType* resultRunningVariance_;
bool resultSave, resultRunning;
std::vector<std::array<index_t, NumInvariantDim>> invariant_index_set_;
std::vector<std::array<index_t, NumBatchNormReduceDim>> reduce_index_set_;
AccDataType averageFactor_;
AccDataType epsilon_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
using ck::host_common::get_offset_from_index;
auto thread_reduce_func = [&](auto invariant_index) {
size_t x_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.x_invariant_strides_, invariant_index);
size_t y_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.y_invariant_strides_, invariant_index);
AccDataType mean = type_convert<AccDataType>(0.0f);
AccDataType variance = type_convert<AccDataType>(0.0f);
int32_t curr_count = 0;
// compute mean, variance using welford method
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
curr_count++;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType delta = x - mean;
mean += delta / curr_count;
AccDataType delta2 = x - mean;
variance += delta * delta2;
};
// actual variance
variance = variance / curr_count;
// inv-variance defined as 1/sqrt(epsilon+variance)
AccDataType invVariance =
type_convert<AccDataType>(1.0f) / ck::math::sqrt(arg.epsilon_ + variance);
// save the mean/inv-variance if required
if(arg.resultSave)
{
size_t offset = get_offset_from_index<NumInvariantDim>(arg.bnMeanVarStrides_,
invariant_index);
arg.resultSaveMean_[offset] = type_convert<MeanVarDataType>(mean);
arg.resultSaveInvVariance_[offset] = type_convert<MeanVarDataType>(invVariance);
};
// update the moving average if required
if(arg.resultRunning)
{
size_t offset = get_offset_from_index<NumInvariantDim>(arg.bnMeanVarStrides_,
invariant_index);
AccDataType oneMinusAverageFactor =
type_convert<AccDataType>(1.0) - arg.averageFactor_;
arg.resultRunningMean_[offset] = type_convert<MeanVarDataType>(
type_convert<AccDataType>(arg.resultRunningMean_[offset]) *
oneMinusAverageFactor +
mean * arg.averageFactor_);
arg.resultRunningVariance_[offset] = type_convert<MeanVarDataType>(
arg.resultRunningVariance_[offset] * oneMinusAverageFactor +
variance * arg.averageFactor_);
};
size_t scale_offset =
get_offset_from_index<NumInvariantDim>(arg.bnScaleStrides_, invariant_index);
size_t bias_offset =
get_offset_from_index<NumInvariantDim>(arg.bnBiasStrides_, invariant_index);
AccDataType scale = type_convert<AccDataType>(arg.bnScale_[scale_offset]);
AccDataType bias = type_convert<AccDataType>(arg.bnBias_[bias_offset]);
// Normalization
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
size_t y_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.y_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
auto y_offset = y_invariant_offset + y_reduce_offset;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType norm_x = (x - mean) * invVariance;
AccDataType y = scale * norm_x + bias;
arg.y_elementwise_op_(y, y);
arg.p_y_[y_offset] = type_convert<YDataType>(y);
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end = std::min(static_cast<size_t>((it + 1) * work_per_thread),
arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; ++i)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> yStrides,
const std::array<int, 3> reduceDims,
const std::array<index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<index_t, 1> bnScaleStrides,
const std::array<index_t, 1> bnBiasStrides,
const std::array<index_t, 1> bnMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
double epsilon,
const YElementwiseOp y_elementwise_op,
void* p_y,
void* resultSaveMean,
void* resultSaveInvVariance,
double averageFactor,
void* resultRunningMean,
void* resultRunningVariance) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
yStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const ScaleDataType*>(bnScale),
static_cast<const BiasDataType*>(bnBias),
epsilon,
y_elementwise_op,
static_cast<YDataType*>(p_y),
static_cast<MeanVarDataType*>(resultSaveMean),
static_cast<MeanVarDataType*>(resultSaveInvVariance),
averageFactor,
static_cast<MeanVarDataType*>(resultRunningMean),
static_cast<MeanVarDataType*>(resultRunningVariance));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Forward" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename InOutDataType, typename AccDataType>
struct ReferenceBatchNormFwd_Input_N_H_W_C_Output_C : public device::DeviceBatchNormFwd<4, 3>
{
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> yStrides,
const std::array<index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<index_t, 1> bnScaleBiasMeanVarStrides,
const InOutDataType* p_x,
const AccDataType* bnScale,
const AccDataType* bnBias,
InOutDataType* p_y,
double exponentialAverageFactor,
AccDataType* resultRunningMean,
AccDataType* resultRunningVariance,
double epsilon,
AccDataType* resultSaveMean,
AccDataType* resultSaveInvVariance)
: p_x_(p_x),
bnScale_(bnScale),
bnBias_(bnBias),
p_y_(p_y),
resultRunningMean_(resultRunningMean),
resultRunningVariance_(resultRunningVariance),
resultSaveMean_(resultSaveMean),
resultSaveInvVariance_(resultSaveInvVariance),
exponentialAverageFactor_(exponentialAverageFactor),
epsilon_(epsilon)
{
(void)xStrides;
(void)yStrides;
(void)bnScaleBiasMeanVarStrides;
if(xyLengths.size() != 4 || bnScaleBiasMeanVarLengths.size() != 1 ||
bnScaleBiasMeanVarLengths[0] != xyLengths[3])
throw std::runtime_error("Invalid tensor dimensions!");
n = xyLengths[0];
h = xyLengths[1];
w = xyLengths[2];
c = xyLengths[3];
resultSave = (resultSaveMean != nullptr && resultSaveInvVariance != nullptr);
resultRunning = (resultRunningMean != nullptr && resultRunningVariance != nullptr);
}
const InOutDataType* p_x_;
const AccDataType* bnScale_;
const AccDataType* bnBias_;
InOutDataType* p_y_;
AccDataType* resultRunningMean_;
AccDataType* resultRunningVariance_;
AccDataType* resultSaveMean_;
AccDataType* resultSaveInvVariance_;
bool resultSave, resultRunning;
index_t n, h, w, c;
double exponentialAverageFactor_;
double epsilon_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
auto thread_reduce_func = [&](auto iC) {
AccDataType reduceSize = type_convert<AccDataType>(arg.n) *
type_convert<AccDataType>(arg.h) *
type_convert<AccDataType>(arg.w);
index_t offset_C = iC;
AccDataType mean = type_convert<AccDataType>(0.0f);
AccDataType meansquare = type_convert<AccDataType>(0.0f);
// compute mean, meanquare, variance, invVariance
for(index_t iN = 0; iN < arg.n; iN++)
{
index_t offset_N = iN * arg.h * arg.w * arg.c;
for(index_t iH = 0; iH < arg.h; iH++)
{
index_t offset_H = iH * arg.w * arg.c;
for(index_t iW = 0; iW < arg.w; iW++)
{
index_t offset_W = iW * arg.c;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
mean += x;
meansquare += x * x;
};
}
};
mean = mean / reduceSize;
meansquare = meansquare / reduceSize;
AccDataType variance = meansquare - mean * mean;
AccDataType invVariance =
type_convert<AccDataType>(1.0f) /
std::sqrt(type_convert<AccDataType>(arg.epsilon_) + variance);
// save the mean/invVariance if required
if(arg.resultSave)
{
arg.resultSaveMean_[iC] = mean;
arg.resultSaveInvVariance_[iC] = invVariance;
};
// update the moving average if required
if(arg.resultRunning)
{
arg.resultRunningMean_[iC] =
arg.resultRunningMean_[iC] *
type_convert<AccDataType>(1.0 - arg.exponentialAverageFactor_) +
mean * arg.exponentialAverageFactor_;
arg.resultRunningVariance_[iC] =
arg.resultRunningVariance_[iC] *
type_convert<AccDataType>(1.0 - arg.exponentialAverageFactor_) +
variance * arg.exponentialAverageFactor_;
};
// Normalization
for(index_t iN = 0; iN < arg.n; iN++)
{
index_t offset_N = iN * arg.h * arg.w * arg.c;
for(index_t iH = 0; iH < arg.h; iH++)
{
index_t offset_H = iH * arg.w * arg.c;
for(index_t iW = 0; iW < arg.w; iW++)
{
index_t offset_W = iW * arg.c;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x =
arg.bnScale_[iC] * (x - mean) * invVariance + arg.bnBias_[iC];
arg.p_y_[offset] = type_convert<InOutDataType>(norm_x);
};
}
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread = (arg.c + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t ic_begin = it * work_per_thread;
std::size_t ic_end = std::min(static_cast<int>((it + 1) * work_per_thread), arg.c);
auto f = [=] {
for(std::size_t ic = ic_begin; ic < ic_end; ++ic)
{
thread_reduce_func(ic);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> yStrides,
const std::array<index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<index_t, 1> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
void* p_y,
double exponentialAverageFactor,
void* resultRunningMean,
void* resultRunningVariance,
double epsilon,
void* resultSaveMean,
void* resultSaveInvVariance) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
yStrides,
bnScaleBiasMeanVarLengths,
bnScaleBiasMeanVarStrides,
static_cast<const InOutDataType*>(p_x),
static_cast<const AccDataType*>(bnScale),
static_cast<const AccDataType*>(bnBias),
static_cast<InOutDataType*>(p_y),
exponentialAverageFactor,
static_cast<AccDataType*>(resultRunningMean),
static_cast<AccDataType*>(resultRunningVariance),
epsilon,
static_cast<AccDataType*>(resultSaveMean),
static_cast<AccDataType*>(resultSaveInvVariance));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Forward_NHWC_C<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim>
struct ReferenceBatchNormInfer : public device::DeviceBatchNormInfer<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumBatchNormReduceDim>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, NumInvariantDim> bnScaleStrides,
const std::array<index_t, NumInvariantDim> bnBiasStrides,
const std::array<index_t, NumInvariantDim> bnMeanVarStrides,
const XDataType* p_x,
const ScaleDataType* bnScale,
const BiasDataType* bnBias,
double epsilon,
const YElementwiseOp y_elementwise_op,
const MeanVarDataType* estimatedMean,
const MeanVarDataType* estimatedVariance,
YDataType* p_y)
: reduceDims_(reduceDims),
bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnBiasStrides_(bnBiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
bnScale_(bnScale),
bnBias_(bnBias),
y_elementwise_op_(y_elementwise_op),
estimatedMean_(estimatedMean),
estimatedVariance_(estimatedVariance),
p_y_(p_y)
{
using ck::host_common::get_index_set;
if(std::any_of(
reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
// get invariant_dims[] and invariant_lengths[]
for(int dim = 0, i = 0; dim < Rank; dim++)
if(std::none_of(
reduceDims.begin(), reduceDims.end(), [&](int d) { return d == dim; }))
{
invariantDims_[i] = dim;
invariant_lengths_[i] = xyLengths[dim];
i++;
};
// get reduce_lengths_[]
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims[j];
reduce_lengths_[i++] = xyLengths[dim];
};
// check invariant_lengths_ and bnScaleBiasMeanVarLengths
for(int i = 0; i < NumInvariantDim; i++)
if(invariant_lengths_[i] != bnScaleBiasMeanVarLengths_[i])
throw std::runtime_error("Invalid lengths parameters!");
for(int j = 0, i = 0; j < NumInvariantDim; j++)
{
int dim = invariantDims_[j];
x_invariant_strides_[i] = xStrides[dim];
y_invariant_strides_[i] = yStrides[dim];
i++;
};
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims_[j];
x_reduce_strides_[i] = xStrides[dim];
y_reduce_strides_[i] = yStrides[dim];
i++;
};
invariant_index_set_ = get_index_set<NumInvariantDim>(invariant_lengths_);
reduce_index_set_ = get_index_set<NumBatchNormReduceDim>(reduce_lengths_);
epsilon_ = type_convert<AccDataType>(epsilon);
}
std::array<int, NumBatchNormReduceDim> reduceDims_;
std::array<int, NumInvariantDim> invariantDims_;
std::array<index_t, NumInvariantDim> invariant_lengths_;
std::array<index_t, NumBatchNormReduceDim> reduce_lengths_;
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths_;
const std::array<index_t, NumInvariantDim> bnScaleStrides_;
const std::array<index_t, NumInvariantDim> bnBiasStrides_;
const std::array<index_t, NumInvariantDim> bnMeanVarStrides_;
std::array<index_t, NumInvariantDim> x_invariant_strides_;
std::array<index_t, NumInvariantDim> y_invariant_strides_;
std::array<index_t, NumBatchNormReduceDim> x_reduce_strides_;
std::array<index_t, NumBatchNormReduceDim> y_reduce_strides_;
const XDataType* p_x_;
const ScaleDataType* bnScale_;
const BiasDataType* bnBias_;
const YElementwiseOp y_elementwise_op_;
const MeanVarDataType* estimatedMean_;
const MeanVarDataType* estimatedVariance_;
YDataType* p_y_;
std::vector<std::array<index_t, NumInvariantDim>> invariant_index_set_;
std::vector<std::array<index_t, NumBatchNormReduceDim>> reduce_index_set_;
AccDataType epsilon_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
using ck::host_common::get_offset_from_index;
auto thread_reduce_func = [&](auto invariant_index) {
size_t x_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.x_invariant_strides_, invariant_index);
size_t y_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.y_invariant_strides_, invariant_index);
size_t mean_variance_offset =
get_offset_from_index<NumInvariantDim>(arg.bnMeanVarStrides_, invariant_index);
AccDataType mean = arg.estimatedMean_[mean_variance_offset];
AccDataType variance = arg.estimatedVariance_[mean_variance_offset];
// inv-variance defined as 1/sqrt(epsilon+variance)
AccDataType invVariance =
type_convert<AccDataType>(1.0f) / std::sqrt(arg.epsilon_ + variance);
size_t scale_offset =
get_offset_from_index<NumInvariantDim>(arg.bnScaleStrides_, invariant_index);
size_t bias_offset =
get_offset_from_index<NumInvariantDim>(arg.bnBiasStrides_, invariant_index);
AccDataType scale = type_convert<AccDataType>(arg.bnScale_[scale_offset]);
AccDataType bias = type_convert<AccDataType>(arg.bnBias_[bias_offset]);
// normalization
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
size_t y_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.y_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
auto y_offset = y_invariant_offset + y_reduce_offset;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType norm_x = (x - mean) * invVariance;
AccDataType y = scale * norm_x + bias;
arg.y_elementwise_op_(y, y);
arg.p_y_[y_offset] = type_convert<YDataType>(y);
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end = std::min(static_cast<size_t>((it + 1) * work_per_thread),
arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; ++i)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, NumInvariantDim> bnScaleStrides,
const std::array<index_t, NumInvariantDim> bnBiasStrides,
const std::array<index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
double epsilon,
const YElementwiseOp y_elementwise_op,
const void* estimatedMean,
const void* estimatedVariance,
void* p_y) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
yStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const ScaleDataType*>(bnScale),
static_cast<const BiasDataType*>(bnBias),
epsilon,
y_elementwise_op,
static_cast<const MeanVarDataType*>(estimatedMean),
static_cast<const MeanVarDataType*>(estimatedVariance),
static_cast<YDataType*>(p_y));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Infer<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_batchnorm_infer.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename InOutDataType, typename AccDataType>
struct ReferenceBatchNormInfer_Input_N_H_W_C_Output_C : public device::DeviceBatchNormInfer<4, 3>
{
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> yStrides,
const std::array<index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<index_t, 1> bnScaleBiasMeanVarStrides,
const InOutDataType* p_x,
const AccDataType* bnScale,
const AccDataType* bnBias,
double epsilon,
const AccDataType* estimatedMean,
const AccDataType* estimatedVariance,
InOutDataType* p_y)
: p_x_(p_x),
bnScale_(bnScale),
bnBias_(bnBias),
epsilon_(epsilon),
estimatedMean_(estimatedMean),
estimatedVariance_(estimatedVariance),
p_y_(p_y)
{
(void)xStrides;
(void)yStrides;
(void)bnScaleBiasMeanVarStrides;
if(xyLengths.size() != 4 || bnScaleBiasMeanVarLengths.size() != 1 ||
bnScaleBiasMeanVarLengths[0] != xyLengths[3])
throw std::runtime_error("Invalid tensor dimensions!");
n = xyLengths[0];
h = xyLengths[1];
w = xyLengths[2];
c = xyLengths[3];
}
const InOutDataType* p_x_;
const AccDataType* bnScale_;
const AccDataType* bnBias_;
double epsilon_;
const AccDataType* estimatedMean_;
const AccDataType* estimatedVariance_;
InOutDataType* p_y_;
index_t n, h, w, c;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
auto thread_reduce_func = [&](auto iC) {
index_t offset_C = iC;
AccDataType mean = arg.estimatedMean_[offset_C];
AccDataType variance = arg.estimatedVariance_[offset_C];
AccDataType invVariance =
type_convert<AccDataType>(1.0f) /
std::sqrt(type_convert<AccDataType>(arg.epsilon_) + variance);
// Normalization
for(index_t iN = 0; iN < arg.n; iN++)
{
index_t offset_N = iN * arg.h * arg.w * arg.c;
for(index_t iH = 0; iH < arg.h; iH++)
{
index_t offset_H = iH * arg.w * arg.c;
for(index_t iW = 0; iW < arg.w; iW++)
{
index_t offset_W = iW * arg.c;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x =
arg.bnScale_[iC] * (x - mean) * invVariance + arg.bnBias_[iC];
arg.p_y_[offset] = type_convert<InOutDataType>(norm_x);
};
}
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread = (arg.c + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t ic_begin = it * work_per_thread;
std::size_t ic_end = std::min(static_cast<int>((it + 1) * work_per_thread), arg.c);
auto f = [=] {
for(std::size_t ic = ic_begin; ic < ic_end; ++ic)
{
thread_reduce_func(ic);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> yStrides,
const std::array<index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<index_t, 1> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
double epsilon,
const void* estimatedMean,
const void* estimatedVariance,
void* p_y) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
yStrides,
bnScaleBiasMeanVarLengths,
bnScaleBiasMeanVarStrides,
static_cast<const InOutDataType*>(p_x),
static_cast<const AccDataType*>(bnScale),
static_cast<const AccDataType*>(bnBias),
epsilon,
static_cast<const AccDataType*>(estimatedMean),
static_cast<const AccDataType*>(estimatedVariance),
static_cast<InOutDataType*>(p_y));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Forward_NHWC_C<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -131,17 +131,22 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
else if constexpr(NDimSpatial == 2)
{
auto f_kcyx = [&](auto g, auto k, auto c, auto y, auto x) {
std::size_t N = arg.output_.GetLengths()[1];
std::size_t Ho = arg.output_.GetLengths()[3];
std::size_t Wo = arg.output_.GetLengths()[4];
float v_acc = 0;
for(std::size_t n = 0; n < arg.output_.GetLengths()[1]; ++n)
for(std::size_t n = 0; n < N; ++n)
{
for(std::size_t ho = 0; ho < arg.output_.GetLengths()[3]; ++ho)
for(std::size_t ho = 0; ho < Ho; ++ho)
{
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(std::size_t wo = 0; wo < arg.output_.GetLengths()[4]; ++wo)
for(std::size_t wo = 0; wo < Wo; ++wo)
{
auto wi =
static_cast<ck::long_index_t>(wo * arg.conv_strides_[1]) +
......
......@@ -44,8 +44,8 @@ struct ReferenceGemmLayernorm : public device::BaseOperator
size_t M = acc.mDesc.GetLengths()[0];
size_t N = acc.mDesc.GetLengths()[1];
Tensor<ComputeDataType> avg_acc_sq(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> avg_acc(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> avg_acc_sq({M});
Tensor<ComputeDataType> avg_acc({M});
Tensor<ComputeDataType> acc_layernorm(acc);
// reduce N dim
......
......@@ -90,11 +90,15 @@ struct ReferenceLayernorm : public device::BaseOperator
for(int m = 0; m < M; ++m)
{
AccDataType divisor =
static_cast<AccDataType>(1) / ck::math::sqrt(var(m) + arg.epsilon_);
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) * divisor;
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.acc_elementwise_op_(y_val, y_val);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/ck.hpp"
#include "ck/utility/ignore.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation,
bool PropagateNan,
bool OutputIndex>
struct ReferenceReduce : public device::DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>
{
using IndexDataType = int32_t;
static constexpr int NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t NumSrcDim = Rank;
static constexpr index_t NumDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, Rank> inLengths,
const std::array<index_t, Rank> inStrides,
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
double alpha,
double beta,
const InDataType* in_host,
OutDataType* out_host,
IndexDataType* out_index_host,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: reduceDims_(reduceDims),
outLengths_(outLengths),
outStrides_(outStrides),
in_host_(in_host),
out_host_(out_host),
out_index_host_(out_index_host),
in_elementwise_op_(in_elementwise_op),
acc_elementwise_op_(acc_elementwise_op)
{
using ck::host_common::get_index_set;
if(std::any_of(
reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
if constexpr(NumInvariantDim > 0)
{
// get invariant_dims[] and invariant_lengths[]
for(int dim = 0, i = 0; dim < Rank; dim++)
if(std::none_of(
reduceDims.begin(), reduceDims.end(), [&](int d) { return d == dim; }))
{
invariantDims_[i] = dim;
invariant_lengths_[i] = inLengths[dim];
i++;
};
};
// get reduce_lengths_[]
for(int j = 0, i = 0; j < NumReduceDim; j++)
{
int dim = reduceDims[j];
reduce_lengths_[i++] = inLengths[dim];
};
if constexpr(NumInvariantDim > 0)
{
// check invariant_lengths_ and outLengths
for(int i = 0; i < NumInvariantDim; i++)
if(invariant_lengths_[i] != outLengths_[i])
throw std::runtime_error("Invalid lengths parameters!");
}
if constexpr(NumInvariantDim > 0)
{
for(int j = 0, i = 0; j < NumInvariantDim; j++)
{
int dim = invariantDims_[j];
in_invariant_strides_[i] = inStrides[dim];
i++;
};
};
for(int j = 0, i = 0; j < NumReduceDim; j++)
{
int dim = reduceDims_[j];
in_reduce_strides_[i] = inStrides[dim];
i++;
};
if constexpr(NumInvariantDim > 0)
invariant_index_set_ = get_index_set<NumInvariantDim>(invariant_lengths_);
reduce_index_set_ = get_index_set<NumReduceDim>(reduce_lengths_);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
};
const std::array<int, NumReduceDim> reduceDims_;
std::array<int, NumInvariantDim> invariantDims_;
std::array<index_t, NumInvariantDim> invariant_lengths_;
std::array<index_t, NumReduceDim> reduce_lengths_;
const std::array<index_t, NumDstDim> outLengths_;
const std::array<index_t, NumDstDim> outStrides_;
std::array<index_t, NumInvariantDim> in_invariant_strides_;
std::array<index_t, NumReduceDim> in_reduce_strides_;
const InDataType* in_host_;
OutDataType* out_host_;
IndexDataType* out_index_host_;
const InElementwiseOperation in_elementwise_op_;
const AccElementwiseOperation acc_elementwise_op_;
AccDataType alpha_;
AccDataType beta_;
std::vector<std::array<index_t, NumInvariantDim>> invariant_index_set_;
std::vector<std::array<index_t, NumReduceDim>> reduce_index_set_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
ignore = stream_config;
using ck::float_equal_one;
using ck::float_equal_zero;
using ck::type_convert;
using ck::host_common::get_index_set;
using ck::host_common::get_offset_from_index;
if constexpr(OutputIndex)
{
using Accumulation = ck::detail::AccumulateWithIndexAndNanCheck<PropagateNan,
ReduceOperation,
AccDataType,
IndexDataType>;
if constexpr(NumInvariantDim == 0)
{
AccDataType accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
for(std::size_t i = 0; i < arg.reduce_index_set_.size(); i++)
{
auto in_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, arg.reduce_index_set_[i]);
auto currVal = type_convert<AccDataType>(arg.in_host_[in_offset]);
arg.in_elementwise_op_(currVal, currVal);
auto currIndex = static_cast<IndexDataType>(i);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[0]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[0] = type_convert<OutDataType>(accuVal);
arg.out_index_host_[0] = accuIndex;
}
else
{
auto thread_reduce_func = [&](auto invariant_index) {
AccDataType accuVal =
ReduceOperation::template GetIdentityValue<AccDataType>();
IndexDataType accuIndex = 0;
auto in_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.in_invariant_strides_, invariant_index);
for(std::size_t i = 0; i < arg.reduce_index_set_.size(); i++)
{
auto in_reduce_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, arg.reduce_index_set_[i]);
auto currVal = type_convert<AccDataType>(
arg.in_host_[in_invariant_offset + in_reduce_offset]);
arg.in_elementwise_op_(currVal, currVal);
auto currIndex = static_cast<IndexDataType>(i);
Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
auto dst_offset = get_offset_from_index<NumInvariantDim>(arg.outStrides_,
invariant_index);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[dst_offset]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[dst_offset] = type_convert<OutDataType>(accuVal);
arg.out_index_host_[dst_offset] = accuIndex;
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end =
std::min((it + 1) * work_per_thread, arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; i++)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
};
}
else
{
using Accumulation =
ck::detail::AccumulateWithNanCheck<PropagateNan, ReduceOperation, AccDataType>;
if constexpr(NumInvariantDim == 0)
{
AccDataType accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();
for(const auto& reduce_index : arg.reduce_index_set_)
{
auto in_offset = get_offset_from_index<NumReduceDim>(arg.in_reduce_strides_,
reduce_index);
auto currVal = type_convert<AccDataType>(arg.in_host_[in_offset]);
arg.in_elementwise_op_(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[0]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[0] = type_convert<OutDataType>(accuVal);
}
else
{
auto thread_reduce_func = [&](auto invariant_index) {
AccDataType accuVal =
ReduceOperation::template GetIdentityValue<AccDataType>();
auto in_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.in_invariant_strides_, invariant_index);
for(const auto& reduce_index : arg.reduce_index_set_)
{
auto in_reduce_offset = get_offset_from_index<NumReduceDim>(
arg.in_reduce_strides_, reduce_index);
auto currVal = type_convert<AccDataType>(
arg.in_host_[in_invariant_offset + in_reduce_offset]);
arg.in_elementwise_op_(currVal, currVal);
Accumulation::Calculate(accuVal, currVal);
};
arg.acc_elementwise_op_(accuVal, accuVal);
if(!float_equal_one{}(arg.alpha_))
accuVal *= type_convert<AccDataType>(arg.alpha_);
auto dst_offset = get_offset_from_index<NumInvariantDim>(arg.outStrides_,
invariant_index);
if(!float_equal_zero{}(arg.beta_))
accuVal += type_convert<AccDataType>(arg.out_host_[dst_offset]) *
type_convert<AccDataType>(arg.beta_);
arg.out_host_[dst_offset] = type_convert<OutDataType>(accuVal);
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end =
std::min((it + 1) * work_per_thread, arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; i++)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
};
};
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
ignore = p_arg;
return true;
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> inLengths,
const std::array<index_t, Rank> inStrides,
const std::array<index_t, NumDstDim> outLengths,
const std::array<index_t, NumDstDim> outStrides,
const std::array<int, NumReduceDim> reduceDims,
double alpha,
double beta,
const void* in_host,
const void* in_index_host,
void* out_host,
void* out_index_host,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
ignore = in_index_host;
return std::make_unique<Argument>(inLengths,
inStrides,
outLengths,
outStrides,
reduceDims,
alpha,
beta,
static_cast<const InDataType*>(in_host),
static_cast<OutDataType*>(out_host),
static_cast<IndexDataType*>(out_index_host),
in_elementwise_op,
acc_elementwise_op);
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_Reduce<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -24,11 +24,14 @@ struct ReferenceSoftmax : public device::BaseOperator
{
Argument(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
double alpha,
double beta,
const std::vector<index_t> sm_reduce_dims)
: in_(in), out_(out), alpha_(alpha), beta_(beta), sm_reduce_dims_(sm_reduce_dims)
: in_(in), out_(out), sm_reduce_dims_(sm_reduce_dims)
{
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<AccDataType>(beta);
// std::cout << "debug: scalar dims: ";
for(size_t i = 0; i < in.mDesc.GetNumOfDimension(); i++)
{
......@@ -60,6 +63,12 @@ struct ReferenceSoftmax : public device::BaseOperator
{
scalar_lengths.push_back(arg.in_.mDesc.GetLengths()[dim]);
}
// max and sum reduction with final reduced values of dim=0 is a scalar so give it
// appropriate lengths of {1}
if(arg.sm_scalar_dims_.size() == 0)
{
scalar_lengths.push_back(1);
}
Tensor<AccDataType> reduce_max(scalar_lengths);
reduce_max.GenerateTensorValue(
......@@ -67,6 +76,9 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> reduce_sum(scalar_lengths);
reduce_sum.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
// when final reduced values is of dim=0, the index will be transformed into empty
// std::vector which is actually a valid input for Tensor::operator(std::vector) and
// internally accesses 0'th element
auto to_sm_scalar_idx = [&](auto idx) {
std::vector<size_t> sm_scalar_idx;
for(index_t dim : arg.sm_scalar_dims_)
......@@ -77,8 +89,8 @@ struct ReferenceSoftmax : public device::BaseOperator
};
arg.in_.ForEach([&](auto& self, auto idx) {
reduce_max(to_sm_scalar_idx(idx)) = std::max(reduce_max(to_sm_scalar_idx(idx)),
static_cast<AccDataType>(self(idx)));
reduce_max(to_sm_scalar_idx(idx)) = std::max(
reduce_max(to_sm_scalar_idx(idx)), ck::type_convert<AccDataType>(self(idx)));
});
// LogRangeAsType<float>(std::cout << "reduce_max: ", reduce_max.mData, ",") <<
......@@ -87,7 +99,7 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> in_stable(arg.in_.mDesc);
in_stable.ForEach([&](auto& self, auto idx) {
// numerator = exp(x - max(x))
self(idx) = std::exp(static_cast<AccDataType>(arg.in_(idx)) -
self(idx) = std::exp(ck::type_convert<AccDataType>(arg.in_(idx)) -
reduce_max(to_sm_scalar_idx(idx)));
});
......@@ -102,8 +114,10 @@ struct ReferenceSoftmax : public device::BaseOperator
// std::endl;
arg.out_.ForEach([&](auto& self, auto idx) {
self(idx) = arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) +
arg.beta_ * self(idx);
AccDataType temp_result =
arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) +
arg.beta_ * self(idx);
self(idx) = ck::type_convert<OutDataType>(temp_result);
});
// LogRangeAsType<float>(std::cout << "out: ", arg.out_.mData, ",") << std::endl;
......@@ -132,8 +146,8 @@ struct ReferenceSoftmax : public device::BaseOperator
static auto MakeArgument(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
double alpha,
double beta,
const std::vector<index_t> sm_reduce_dims)
{
return Argument{in, out, alpha, beta, sm_reduce_dims};
......
......@@ -3,10 +3,10 @@
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
namespace ck {
namespace tensor_operation {
......@@ -26,7 +26,9 @@ using Empty_Tuple = ck::Tuple<>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_Tuple = ck::Tuple<F32>;
using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
using I32_F32_Tuple = ck::Tuple<I32, F32>;
// GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor;
......@@ -75,13 +77,38 @@ using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
//
using GK = ck::tensor_layout::convolution::G_K;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Activation_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Activation>;
template <typename Activation>
using Add_Activation_Mul2_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Activation>;
template <typename DeviceOp>
template <typename DeviceOp, typename Tag = void>
struct DeviceOperationInstanceFactory;
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_contraction_bias_permute_m2_n3_k1_xdl_c_shuffle_f16_f16_f16_f16_mnnm_instance(
std::vector<std::unique_ptr<
DeviceBatchedContractionMultipleD<1,
2,
3,
1,
F16,
F16,
F16_Tuple,
F16,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>>>& instances);
// Contraction + add
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedContractionMultipleD<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>>
{
using DeviceOp =
DeviceBatchedContractionMultipleD<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::half_t> &&
is_same_v<DDataType, ck::half_t> && is_same_v<EDataType, ck::half_t>)
{
if constexpr(NumDimG == 1 && NumDimM == 2 && NumDimN == 3 && NumDimK == 1)
{
add_device_batched_contraction_bias_permute_m2_n3_k1_xdl_c_shuffle_f16_f16_f16_f16_mnnm_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<F16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
void add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<BF16>,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
template <typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename Acc0BiasDataType,
MaskingSpecialization MaskingSpec>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpec>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
ck::Tuple<>,
PassThrough,
PassThrough,
ScaleAdd,
PassThrough,
PassThrough,
MaskingSpec>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t> &&
Acc0BiasDataType::Size() == 1 &&
is_same_v<tuple_element_t<0, Acc0BiasDataType>, half_t>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, BF16> && is_same_v<B0DataType, BF16> &&
is_same_v<B1DataType, BF16> && is_same_v<CDataType, BF16> &&
Acc0BiasDataType::Size() == 1 &&
is_same_v<tuple_element_t<0, Acc0BiasDataType>, BF16>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_bias_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_bias_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -28,9 +28,26 @@ void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_g
F16,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
PassThrough>>>& instances);
false>>>& instances);
void add_device_batched_gemm_masking_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<Row,
Col,
Row,
Row,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
true>>>& instances);
template <typename ALayout,
typename B0Layout,
......@@ -39,7 +56,8 @@ template <typename ALayout,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType>
typename CDataType,
bool MaskOutUpperTriangle>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
......@@ -51,9 +69,10 @@ struct DeviceOperationInstanceFactory<
CDataType,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
PassThrough>>
MaskOutUpperTriangle>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
......@@ -65,9 +84,10 @@ struct DeviceOperationInstanceFactory<
CDataType,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
PassThrough>;
MaskOutUpperTriangle>;
static auto GetInstances()
{
......@@ -79,8 +99,16 @@ struct DeviceOperationInstanceFactory<
if constexpr(is_same_v<ALayout, Row> && is_same_v<B0Layout, Col> &&
is_same_v<B1Layout, Row> && is_same_v<CLayout, Row>)
{
add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
if constexpr(MaskOutUpperTriangle)
{
add_device_batched_gemm_masking_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
else
{
add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
}
}
return op_ptrs;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
F16,
F16,
F16,
F16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
void add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
template <typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
MaskingSpecialization MaskingSpec>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpec>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpec>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, BF16> && is_same_v<B0DataType, BF16> &&
is_same_v<B1DataType, BF16> && is_same_v<CDataType, BF16>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_backward_rank_4_3_f16_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F16, F32, F32, F32, F16, F32, F32, PassThrough, 4, 3>>>&);
// FP32
void add_device_batchnorm_backward_rank_4_3_f32_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F32, F32, F32, F32, F32, F32, F32, PassThrough, 4, 3>>>&);
// BF16
void add_device_batchnorm_backward_rank_4_3_bf16_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<BF16, F32, F32, F32, BF16, F32, F32, PassThrough, 4, 3>>>&);
// FP64
void add_device_batchnorm_backward_rank_4_3_f64_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F64, F64, F64, F64, F64, F64, F64, PassThrough, 4, 3>>>&);
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, F16> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, F32> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, BF16> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<DxDataType, F64> &&
is_same_v<DyDataType, F64> && is_same_v<AccDataType, F64> &&
is_same_v<ScaleDataType, F64> && is_same_v<DscaleDbiasDataType, F64> &&
is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_forward_rank_4_3_f16_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F16, F16, F32, F16, F16, F32, PassThrough, 4, 3>>>&);
// FP32
void add_device_batchnorm_forward_rank_4_3_f32_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F32, F32, F32, F32, F32, F32, PassThrough, 4, 3>>>&);
// BF16
void add_device_batchnorm_forward_rank_4_3_bf16_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<BF16, BF16, F32, BF16, BF16, F32, PassThrough, 4, 3>>>&);
// FP64
void add_device_batchnorm_forward_rank_4_3_f64_instances(
std::vector<
std::unique_ptr<DeviceBatchNormFwd<F64, F64, F64, F64, F64, F64, PassThrough, 4, 3>>>&);
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename YElementwiseOp,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
YElementwiseOp,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, F16> &&
is_same_v<BiasDataType, F16> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, F32> &&
is_same_v<BiasDataType, F32> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<YDataType, BF16> &&
is_same_v<AccDataType, F32> && is_same_v<ScaleDataType, BF16> &&
is_same_v<BiasDataType, BF16> && is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<YDataType, F64> &&
is_same_v<AccDataType, F64> && is_same_v<ScaleDataType, F64> &&
is_same_v<BiasDataType, F64> && is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<YElementwiseOp, PassThrough>)
{
add_device_batchnorm_forward_rank_4_3_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_infer_rank_4_f16_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F16, F32, F32, F16, F16>,
ck::Tuple<F16>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// FP32
void add_device_batchnorm_infer_rank_4_f32_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F32, F32, F32, F32, F32>,
ck::Tuple<F32>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// BF16
void add_device_batchnorm_infer_rank_4_bf16_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<BF16, F32, F32, BF16, BF16>,
ck::Tuple<BF16>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
// FP64
void add_device_batchnorm_infer_rank_4_f64_instances(
std::vector<std::unique_ptr<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<F64, F64, F64, F64, F64>,
ck::Tuple<F64>,
ck::tensor_operation::element_wise::NormalizeInInfer,
4>>>&);
template <typename XDataType,
typename YDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
index_t Rank>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
ck::tensor_operation::element_wise::NormalizeInInfer,
Rank>>
{
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
ck::tensor_operation::element_wise::NormalizeInInfer,
Rank>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<ScaleDataType, F16> && is_same_v<BiasDataType, F16> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<ScaleDataType, F32> && is_same_v<BiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<YDataType, BF16> &&
is_same_v<ScaleDataType, BF16> && is_same_v<BiasDataType, BF16> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<YDataType, F64> &&
is_same_v<ScaleDataType, F64> && is_same_v<BiasDataType, F64> &&
is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4)
{
add_device_batchnorm_infer_rank_4_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -101,6 +101,42 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
PassThrough,
PassThrough>>>& instances);
// conv2d dl
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward data
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
......@@ -216,11 +252,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
......@@ -232,6 +270,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
......@@ -18,11 +18,8 @@ namespace device {
namespace instance {
using Normalize = ck::tensor_operation::element_wise::Normalize;
using DeviceNormalizeFromMeanMeanSquarePtr = ck::tensor_operation::device::DeviceElementwiseBasePtr<
Tuple<half_t, float, float, half_t, half_t>,
Tuple<half_t>,
Normalize,
2>;
using DeviceNormalizeFromMeanMeanSquarePtr = ck::tensor_operation::device::
DeviceElementwisePtr<Tuple<half_t, float, float, half_t, half_t>, Tuple<half_t>, Normalize, 2>;
void add_device_normalize_from_mean_squaremean_f16_f32_f32_f16_f16_instances(
std::vector<DeviceNormalizeFromMeanMeanSquarePtr>& instances);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment