Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e663a0d7
Commit
e663a0d7
authored
Aug 25, 2023
by
letaoqin
Browse files
v1 gridwise gemm
parent
701879d0
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
166 additions
and
13 deletions
+166
-13
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_v2.cpp
..._softmax_gemm/batched_multihead_attention_backward_v2.cpp
+6
-6
example/52_flash_atten_bias/batched_multihead_attention_bias_backward_v2.cpp
...ten_bias/batched_multihead_attention_bias_backward_v2.cpp
+4
-3
include/ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v1.hpp
...id/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v1.hpp
+156
-3
include/ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v2.hpp
...id/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v2.hpp
+0
-1
No files found.
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_v2.cpp
View file @
e663a0d7
...
...
@@ -25,7 +25,7 @@ Kernel outputs:
#define PRINT_HOST 0
#define USING_MASK 0
#define DIM
128
// DIM should be a multiple of 8.
#define DIM
32
// DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
...
...
@@ -104,11 +104,11 @@ static constexpr bool Deterministic = false;
#if(DIM <= 32)
// clang-format off
using
DeviceGemmInstance
=
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ########################################################################################| | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ########################################################################################| | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ########################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
InputDataType
,
OutputDataType
,
GemmDataType
,
ZDataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
128
,
128
,
32
,
32
,
32
,
8
,
8
,
2
,
32
,
32
,
4
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpec
,
Deterministic
>
;
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds|
D0BlockTransfer|
CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ########################################################################################| | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN|
SrcScalar|
MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ########################################################################################| | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| |
PerVector|
PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ########################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | |
|
| | | | | |
ck
::
tensor_operation
::
device
::
DeviceBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
InputDataType
,
OutputDataType
,
GemmDataType
,
ZDataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
128
,
128
,
32
,
32
,
32
,
8
,
8
,
2
,
32
,
32
,
4
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
4
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpec
,
Deterministic
>
;
// clang-format on
#elif(DIM <= 64)
// clang-format off
...
...
example/52_flash_atten_bias/batched_multihead_attention_bias_backward_v2.cpp
View file @
e663a0d7
...
...
@@ -273,12 +273,12 @@ int run(int argc, char* argv[])
// y_g_m_o = Softmax(alpha * Q_g_m_k * K_g_k_n) * V_g_n_o
// y_g0_g1_m_o = reshape(y_g_m_o, [G0, G1, M, O])
// y_g0_m_g1_o = permute(y_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
M
=
12
8
;
ck
::
index_t
M
=
5
12
;
ck
::
index_t
N
=
512
;
ck
::
index_t
K
=
DIM
;
ck
::
index_t
O
=
DIM
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
1
;
ck
::
index_t
G0
=
4
;
ck
::
index_t
G1
=
6
;
bool
input_permute
=
false
;
bool
output_permute
=
false
;
...
...
@@ -420,6 +420,7 @@ int run(int argc, char* argv[])
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
Acc0BiasDataType
>
{
-
2
,
2
});
// d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<Acc0BiasDataType>{1});
break
;
case
2
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v1.hpp
View file @
e663a0d7
...
...
@@ -21,8 +21,8 @@
namespace
ck
{
template
<
typename
InputDataType
,
typename
OutputDataType
,
typename
D0DataType
,
typename
OutputDataType
,
typename
ZDataType
,
typename
GemmDataType
,
typename
FloatGemmAcc
,
...
...
@@ -1249,6 +1249,98 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
using
D0GridDescriptor_M0_N0_M1_M2_N1_M3
=
remove_cvref_t
<
decltype
(
MakeD0GridDescriptor_M0_N0_M1_M2_N1_M3
(
D0GridDesc_M_N
{}))
>
;
struct
D0Loader
{
template
<
typename
DataType
>
struct
TypeTransform
{
using
Type
=
DataType
;
};
template
<
>
struct
TypeTransform
<
void
>
{
using
Type
=
ck
::
half_t
;
};
static
constexpr
index_t
NThreadClusterLengths
=
MPerXdl
;
static_assert
(
MPerXdl
<=
KPerBlock
);
static_assert
(
D0BlockTransferSrcScalarPerVector
*
NThreadClusterLengths
<=
NPerBlock
,
"D0BlockTransferSrcScalarPerVector * NThreadClusterLengths <= NPerBlock"
);
__host__
__device__
static
constexpr
auto
GetD0BlockDescriptor_M0_N0_M1_M2_N1_M3
()
{
// B1 matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
I1
,
I1
,
D0M1
,
Number
<
NPerBlock
>
{},
D0M2
),
make_tuple
(
Number
<
NPerBlock
>
{}
*
D0M2
,
Number
<
NPerBlock
>
{}
*
D0M2
,
Number
<
NPerBlock
>
{}
*
D0M2
,
Number
<
NPerBlock
>
{}
*
D0M2
,
D0M2
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetD0BlockReadDescriptor_N0_N1_M0_M1_M2_M3
()
{
constexpr
auto
d0_raw_m0_n_m1
=
make_naive_tensor_descriptor
(
make_tuple
(
D0M1
,
Number
<
NPerBlock
>
{},
D0M2
),
make_tuple
(
Number
<
NPerBlock
>
{}
*
D0M2
,
D0M2
,
I1
));
constexpr
auto
d0_n0_n1_m0_m1_m2_m3
=
transform_tensor_descriptor
(
d0_raw_m0_n_m1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
D0M1
/
I2
,
I2
)),
make_unmerge_transform
(
make_tuple
(
Number
<
NPerBlock
/
NPerXdl
>
{},
Number
<
NPerXdl
>
{})),
make_pass_through_transform
(
D0M2
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
2
,
3
>
{},
Sequence
<
0
,
1
>
{},
Sequence
<
4
>
{}));
return
d0_n0_n1_m0_m1_m2_m3
;
}
static
constexpr
auto
d0_block_desc_m0_n0_m1_m2_n1_m3
=
GetD0BlockDescriptor_M0_N0_M1_M2_N1_M3
();
static
constexpr
auto
d0_block_desc_n0_n1_m0_m1_m2_m3
=
GetD0BlockReadDescriptor_N0_N1_M0_M1_M2_M3
();
static
constexpr
auto
d0_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I4
,
I1
,
D0M2
));
using
D0BlockwiseCopy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
tensor_operation
::
element_wise
::
PassThrough
,
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
I1
,
I1
,
I1
,
D0M1
,
NPerBlock
,
D0M2
>
,
// BlockSliceLengths
Sequence
<
1
,
1
,
1
,
BlockSize
/
NThreadClusterLengths
,
NThreadClusterLengths
,
1
>
,
// ThreadClusterLengths
Sequence
<
0
,
1
,
2
,
3
,
5
,
4
>
,
// ThreadClusterArrangeOrder
typename
TypeTransform
<
D0DataType
>::
Type
,
// SrcData
typename
TypeTransform
<
D0DataType
>::
Type
,
// DstData
D0GridDescriptor_M0_N0_M1_M2_N1_M3
,
// SrcDesc
decltype
(
d0_block_desc_m0_n0_m1_m2_n1_m3
),
// DstDesc
Sequence
<
0
,
1
,
2
,
3
,
5
,
4
>
,
// SrcDimAccessOrder
Sequence
<
0
,
1
,
2
,
4
,
3
,
5
>
,
// DstDimAccessOrder
4
,
// SrcVectorDim
5
,
// DstVectorDim
D0BlockTransferSrcScalarPerVector
,
// SrcScalarPerVector
4
,
// DstScalarPerVector
1
,
1
,
true
,
true
,
// DstResetCoord
1
>
;
using
D0ThreadCopy
=
ThreadwiseTensorSliceTransfer_v4
<
typename
TypeTransform
<
D0DataType
>::
Type
,
// SrcData
typename
TypeTransform
<
D0DataType
>::
Type
,
// DstData
decltype
(
d0_block_desc_n0_n1_m0_m1_m2_m3
),
// SrcDesc
decltype
(
d0_thread_desc_
),
// DstDesc
Sequence
<
1
,
1
,
4
,
1
,
4
>
,
// SliceLengths
Sequence
<
0
,
1
,
2
,
3
,
4
>
,
// DimAccessOrder
4
,
// SrcVectorDim
2
,
// SrcScalarPerVector
2
>
;
};
template
<
bool
HasMainKBlockLoop
,
bool
IsDropout
,
typename
Block2CTileMap
,
...
...
@@ -1290,8 +1382,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
const
index_t
raw_n_padded
,
const
index_t
block_idx_n
)
{
ignore
=
p_d0_grid
;
ignore
=
d0_grid_desc_m0_n0_m1_m2_n1_m3
;
const
FloatGemmAcc
p_dropout
=
type_convert
<
FloatGemmAcc
>
(
1.0
f
-
p_drop
);
const
FloatGemmAcc
rp_dropout
=
type_convert
<
FloatGemmAcc
>
(
1.0
f
/
p_dropout
);
const
ushort
p_dropout_in_16bits
=
...
...
@@ -1827,6 +1917,18 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
// gemm0 M loop
index_t
gemm0_m_block_outer_index
=
num_gemm0_m_block_outer_loop
-
1
;
// D0
auto
d0_block_copy_global_to_lds
=
typename
D0Loader
::
D0BlockwiseCopy
(
d0_grid_desc_m0_n0_m1_m2_n1_m3
,
make_multi_index
(
gemm0_m_block_outer_index
,
block_work_idx_n
,
0
,
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{},
D0Loader
::
d0_block_desc_m0_n0_m1_m2_n1_m3
,
make_multi_index
(
0
,
0
,
0
,
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
auto
d0_thread_copy_lds_to_vgpr
=
typename
D0Loader
::
D0ThreadCopy
(
make_tuple
(
wave_id
[
I1
],
wave_m_n_id
[
I1
],
0
,
wave_m_n_id
[
I0
],
0
));
do
{
auto
m_block_data_idx_on_grid
=
...
...
@@ -1974,6 +2076,57 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
}
block_sync_lds
();
// wait for lds read in gemm0 blockwise gemm
// add bias
if
constexpr
(
!
is_same
<
D0DataType
,
void
>::
value
)
{
static
constexpr
auto
&
c_thread_desc
=
s_blockwise_gemm
.
GetCThreadDesc
();
const
auto
d0_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d0_grid
,
d0_grid_desc_m0_n0_m1_m2_n1_m3
.
GetElementSpaceSize
());
auto
d0_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
D0DataType
*>
(
p_shared
)
+
SharedMemTrait
::
k_block_space_offset
,
D0Loader
::
d0_block_desc_m0_n0_m1_m2_n1_m3
.
GetElementSpaceSize
());
auto
d0_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
D0DataType
>
(
D0Loader
::
d0_thread_desc_
.
GetElementSpaceSize
());
static_for
<
0
,
D0M0
,
1
>
{}([
&
](
auto
mr
)
{
// load data to lds
d0_block_copy_global_to_lds
.
RunRead
(
d0_grid_desc_m0_n0_m1_m2_n1_m3
,
d0_grid_buf
);
d0_block_copy_global_to_lds
.
MoveSrcSliceWindow
(
d0_grid_desc_m0_n0_m1_m2_n1_m3
,
make_multi_index
(
0
,
0
,
1
,
0
,
0
,
0
));
d0_block_copy_global_to_lds
.
RunWrite
(
D0Loader
::
d0_block_desc_m0_n0_m1_m2_n1_m3
,
d0_block_buf
);
block_sync_lds
();
// read data form lds
d0_thread_copy_lds_to_vgpr
.
Run
(
D0Loader
::
d0_block_desc_n0_n1_m0_m1_m2_m3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
),
d0_block_buf
,
D0Loader
::
d0_thread_desc_
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
),
d0_thread_buf
);
// bias add
static_for
<
0
,
d0_thread_buf
.
Size
(),
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
c_offset
=
c_thread_desc
.
CalculateOffset
(
make_tuple
(
mr
,
I0
,
i
));
s_slash_p_thread_buf
(
Number
<
c_offset
>
{})
+=
ck
::
type_convert
<
FloatGemmAcc
>
(
d0_thread_buf
[
i
]);
});
});
// load k
gemm_tile_k_blockwise_copy
.
RunWrite
(
GemmBlockwiseCopy
::
k_block_desc_k0_n_k1
,
k_block_buf
);
d0_block_copy_global_to_lds
.
MoveSrcSliceWindow
(
d0_grid_desc_m0_n0_m1_m2_n1_m3
,
make_multi_index
(
-
1
,
0
,
-
D0M0
.
value
,
0
,
0
,
0
));
}
// P_i: = softmax(scalar * S_i:)
// scaling is already performed in the preceding statements with s_element_op
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_v2.hpp
View file @
e663a0d7
...
...
@@ -1180,7 +1180,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
using
D0GridDescriptor_M0_N0_M1_M2_N1_M3
=
remove_cvref_t
<
decltype
(
MakeD0GridDescriptor_M0_N0_M1_M2_N1_M3
(
D0GridDesc_M_N
{}))
>
;
// template<typename DataType>
struct
D0Loader
{
template
<
typename
DataType
>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment