Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e4e99a49
Commit
e4e99a49
authored
Sep 22, 2022
by
Po-Yen, Chen
Browse files
Use new utilities to shorten codes
parent
7acbf104
Changes
144
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
677 additions
and
715 deletions
+677
-715
profiler/include/profile_conv_bwd_weight_impl.hpp
profiler/include/profile_conv_bwd_weight_impl.hpp
+37
-39
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
+53
-58
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
+50
-55
profiler/include/profile_conv_fwd_impl.hpp
profiler/include/profile_conv_fwd_impl.hpp
+34
-35
profiler/include/profile_convnd_bwd_data_impl.hpp
profiler/include/profile_convnd_bwd_data_impl.hpp
+37
-37
profiler/include/profile_convnd_bwd_weight_impl.hpp
profiler/include/profile_convnd_bwd_weight_impl.hpp
+39
-39
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
+43
-43
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
+45
-55
profiler/include/profile_gemm_bilinear_impl.hpp
profiler/include/profile_gemm_bilinear_impl.hpp
+39
-39
profiler/include/profile_gemm_impl.hpp
profiler/include/profile_gemm_impl.hpp
+35
-36
profiler/include/profile_gemm_reduce_impl.hpp
profiler/include/profile_gemm_reduce_impl.hpp
+40
-49
profiler/include/profile_gemm_splitk_impl.hpp
profiler/include/profile_gemm_splitk_impl.hpp
+37
-38
profiler/include/profile_grouped_conv_fwd_impl.hpp
profiler/include/profile_grouped_conv_fwd_impl.hpp
+42
-39
profiler/include/profile_grouped_gemm_impl.hpp
profiler/include/profile_grouped_gemm_impl.hpp
+25
-29
profiler/include/profile_groupnorm_impl.hpp
profiler/include/profile_groupnorm_impl.hpp
+19
-20
profiler/include/profile_layernorm_impl.hpp
profiler/include/profile_layernorm_impl.hpp
+17
-18
profiler/include/profile_normalization_impl.hpp
profiler/include/profile_normalization_impl.hpp
+24
-27
profiler/include/profile_reduce_impl.hpp
profiler/include/profile_reduce_impl.hpp
+31
-31
test/data_type/int4.cpp
test/data_type/int4.cpp
+6
-6
test/gemm/gemm_util.hpp
test/gemm/gemm_util.hpp
+24
-22
No files found.
profiler/include/profile_conv_bwd_weight_impl.hpp
View file @
e4e99a49
...
...
@@ -3,25 +3,26 @@
#pragma once
#include "ck/ck.hpp"
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_weight.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -30,16 +31,16 @@ template <typename DataType>
void
show_data_nhwc_layout
(
Tensor
<
DataType
>&
nhwc
)
{
std
::
cout
<<
"["
;
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
0
]);
n
++
)
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
0
]);
n
++
)
{
std
::
cout
<<
"["
;
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
2
]);
hi
++
)
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
2
]);
hi
++
)
{
std
::
cout
<<
"["
;
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
3
]);
wi
++
)
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
3
]);
wi
++
)
{
std
::
cout
<<
"["
;
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
1
]);
c
++
)
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
1
]);
c
++
)
{
std
::
cout
<<
static_cast
<
float
>
(
nhwc
(
n
,
c
,
hi
,
wi
))
<<
" "
;
}
...
...
@@ -88,9 +89,9 @@ bool profile_conv_bwd_weight_impl(int do_verification,
Tensor
<
WeiDataType
>
weight_device_result
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
output
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"input: "
<<
input
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"input: "
<<
input
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -104,13 +105,12 @@ bool profile_conv_bwd_weight_impl(int do_verification,
output
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weight_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
output
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
input
.
GetMemorySize
());
DeviceMem
wei_device_buf
(
weight_device_result
.
GetMemorySize
());
DeviceMem
out_device_buf
(
output
.
GetMemorySize
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
out_device_buf
.
ToDevice
(
output
.
mData
.
data
());
in_device_buf
.
ToDevice
(
input
.
data
());
out_device_buf
.
ToDevice
(
output
.
data
());
if
(
do_verification
)
{
...
...
@@ -165,10 +165,9 @@ bool profile_conv_bwd_weight_impl(int do_verification,
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
...
...
@@ -215,10 +214,9 @@ bool profile_conv_bwd_weight_impl(int do_verification,
if
(
do_verification
)
{
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
wei_device_buf
.
FromDevice
(
weight_device_result
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
weight_host_result
.
mData
,
weight_device_result
.
mData
);
bool
pass
=
ck
::
utils
::
check_err
(
weight_host_result
,
weight_device_result
);
if
(
!
pass
)
{
...
...
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
View file @
e4e99a49
...
...
@@ -4,15 +4,16 @@
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_bias_activation_add.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation_add.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_conv_fwd_bias_activation_add
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -66,21 +67,21 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>
::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>
::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>
||
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>
||
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>
::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>
::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>
::
value
)
else
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>
||
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>
||
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
}
};
...
...
@@ -92,17 +93,16 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
({
K
}));
// residual: assume same layout as output tensor
Tensor
<
OutDataType
>
resi_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"resi_n_k_ho_wo: "
<<
resi_n_k_ho_wo
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"resi_n_k_ho_wo: "
<<
resi_n_k_ho_wo
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -157,17 +157,16 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
resi_device_buf
(
sizeof
(
OutDataType
)
*
resi_n_k_ho_wo
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
in_n_c_hi_wi
.
GetMemorySize
());
DeviceMem
wei_device_buf
(
wei_k_c_y_x
.
GetMemorySize
());
DeviceMem
out_device_buf
(
out_n_k_ho_wo_device_result
.
GetMemorySize
());
DeviceMem
bias_device_buf
(
bias_k
.
GetMemorySize
());
DeviceMem
resi_device_buf
(
resi_n_k_ho_wo
.
GetMemorySize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
resi_device_buf
.
ToDevice
(
resi_n_k_ho_wo
.
mData
.
data
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
data
());
resi_device_buf
.
ToDevice
(
resi_n_k_ho_wo
.
data
());
using
DeviceConvFwdBiasReluAddPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationAddPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
...
...
@@ -196,12 +195,11 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
resi_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
bias_device_buf
.
GetDeviceBuffer
(),
resi_device_buf
.
GetDeviceBuffer
(),
N
,
K
,
C
,
...
...
@@ -225,7 +223,7 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
flop
=
2
_uz
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
...
...
@@ -249,22 +247,19 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
data
());
ck
::
utils
::
check_err
(
out_n_k_ho_wo_device_result
.
mData
,
out_n_k_ho_wo_host_result
.
mData
);
ck
::
utils
::
check_err
(
out_n_k_ho_wo_device_result
,
out_n_k_ho_wo_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
View file @
e4e99a49
...
...
@@ -4,15 +4,16 @@
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_bias_activation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_conv_fwd_bias_activation
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -66,21 +67,21 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>
::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>
::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>
||
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>
||
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>
::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>
::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>
::
value
)
else
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>
||
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>
||
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
}
};
...
...
@@ -92,13 +93,12 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
({
K
}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -149,15 +149,14 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
in_n_c_hi_wi
.
GetMemorySize
());
DeviceMem
wei_device_buf
(
wei_k_c_y_x
.
GetMemorySize
());
DeviceMem
out_device_buf
(
out_n_k_ho_wo_device_result
.
GetMemorySize
());
DeviceMem
bias_device_buf
(
bias_k
.
GetMemorySize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
data
());
using
DeviceConvFwdBiasReluPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
...
...
@@ -186,11 +185,10 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
bias_device_buf
.
GetDeviceBuffer
(),
N
,
K
,
C
,
...
...
@@ -214,7 +212,7 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
flop
=
2
_uz
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
...
...
@@ -237,22 +235,19 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
data
());
ck
::
utils
::
check_err
(
out_n_k_ho_wo_device_result
.
mData
,
out_n_k_ho_wo_host_result
.
mData
);
ck
::
utils
::
check_err
(
out_n_k_ho_wo_device_result
,
out_n_k_ho_wo_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_conv_fwd_impl.hpp
View file @
e4e99a49
...
...
@@ -8,19 +8,19 @@
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_forward.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -60,9 +60,9 @@ bool profile_conv_fwd_impl(int do_verification,
Tensor
<
OutDataType
>
host_output
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
device_output
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"input: "
<<
input
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"input: "
<<
input
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -76,12 +76,12 @@ bool profile_conv_fwd_impl(int do_verification,
weight
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weight
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
in_device_buf
(
input
.
GetMemory
Size
());
DeviceMem
wei_device_buf
(
weight
.
GetMemory
Size
());
DeviceMem
out_device_buf
(
device_output
.
GetMemory
Size
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
mData
.
data
());
in_device_buf
.
ToDevice
(
input
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
data
());
// run reference op
if
(
do_verification
)
...
...
@@ -139,10 +139,9 @@ bool profile_conv_fwd_impl(int do_verification,
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
...
...
@@ -189,17 +188,17 @@ bool profile_conv_fwd_impl(int do_verification,
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
out_device_buf
.
FromDevice
(
device_output
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
.
mData
,
host_output
.
mData
);
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
weight
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
weight
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_convnd_bwd_data_impl.hpp
View file @
e4e99a49
...
...
@@ -4,16 +4,17 @@
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/ranges.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -241,16 +242,16 @@ template <typename DataType>
void
show_data_nhwc_layout
(
Tensor
<
DataType
>&
nhwc
)
{
std
::
cout
<<
"["
;
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
0
]);
n
++
)
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
0
]);
n
++
)
{
std
::
cout
<<
"["
;
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
2
]);
hi
++
)
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
2
]);
hi
++
)
{
std
::
cout
<<
"["
;
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
3
]);
wi
++
)
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
3
]);
wi
++
)
{
std
::
cout
<<
"["
;
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
1
]);
c
++
)
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
1
]);
c
++
)
{
std
::
cout
<<
static_cast
<
float
>
(
nhwc
(
n
,
c
,
hi
,
wi
))
<<
" "
;
}
...
...
@@ -294,16 +295,16 @@ bool profile_convnd_bwd_data_impl(int do_verification,
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
C
)}
;
auto
input_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
N
,
C
})
;
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
K
),
static_cast
<
std
::
size_t
>
(
C
)}
;
auto
filter_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
K
,
C
})
;
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
));
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
K
)}
;
auto
output_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
N
,
K
})
;
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
...
...
@@ -317,9 +318,9 @@ bool profile_convnd_bwd_data_impl(int do_verification,
Tensor
<
OutDataType
>
output
(
get_output_host_ensor_descriptor
<
OutLayout
>
(
output_dims
,
NDimSpatial
));
std
::
cout
<<
"input: "
<<
input_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"input: "
<<
input_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -333,12 +334,12 @@ bool profile_convnd_bwd_data_impl(int do_verification,
weights
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input_device_result
.
mDesc
.
GetElementSpac
e
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpac
e
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
output
.
mDesc
.
GetElementSpac
e
());
DeviceMem
in_device_buf
(
input_device_result
.
GetMemorySiz
e
());
DeviceMem
wei_device_buf
(
weights
.
GetMemorySiz
e
());
DeviceMem
out_device_buf
(
output
.
GetMemorySiz
e
());
out_device_buf
.
ToDevice
(
output
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
out_device_buf
.
ToDevice
(
output
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
...
...
@@ -391,10 +392,9 @@ bool profile_convnd_bwd_data_impl(int do_verification,
bool
success
=
true
;
for
(
auto
&
conv_ptr
:
conv_ptrs
)
{
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
N
,
K
,
C
,
...
...
@@ -440,7 +440,7 @@ bool profile_convnd_bwd_data_impl(int do_verification,
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
input_device_result
.
mData
.
data
());
in_device_buf
.
FromDevice
(
input_device_result
.
data
());
if
(
!
check_out
(
input_host_result
,
input_device_result
))
{
...
...
@@ -453,7 +453,7 @@ bool profile_convnd_bwd_data_impl(int do_verification,
std
::
cout
<<
"Pass Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
}
success
=
ck
::
utils
::
check_err
(
input_host_result
.
mData
,
input_device_result
.
mData
);
success
=
ck
::
utils
::
check_err
(
input_host_result
,
input_device_result
);
if
(
do_log
)
{
...
...
profiler/include/profile_convnd_bwd_weight_impl.hpp
View file @
e4e99a49
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/ranges.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -205,16 +206,16 @@ template <typename DataType>
void
show_data_nhwc_layout
(
Tensor
<
DataType
>&
nhwc
)
{
std
::
cout
<<
"["
;
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
0
]);
n
++
)
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
0
]);
n
++
)
{
std
::
cout
<<
"["
;
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
2
]);
hi
++
)
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
2
]);
hi
++
)
{
std
::
cout
<<
"["
;
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
3
]);
wi
++
)
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
3
]);
wi
++
)
{
std
::
cout
<<
"["
;
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
1
]);
c
++
)
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
GetLengths
()[
1
]);
c
++
)
{
std
::
cout
<<
static_cast
<
float
>
(
nhwc
(
n
,
c
,
hi
,
wi
))
<<
" "
;
}
...
...
@@ -258,16 +259,16 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
C
)}
;
auto
input_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
N
,
C
})
;
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
K
),
static_cast
<
std
::
size_t
>
(
C
)}
;
auto
filter_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
K
,
C
})
;
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
));
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
K
)}
;
auto
output_dims
=
ck
::
ranges
::
to
<
std
::
vector
<
std
::
size_t
>
>
({
N
,
K
})
;
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
...
...
@@ -280,9 +281,9 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
Tensor
<
OutDataType
>
output
(
get_output_host_ensor_descriptor
<
OutLayout
>
(
output_dims
,
NDimSpatial
));
std
::
cout
<<
"input: "
<<
input
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"input: "
<<
input
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
output
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -296,12 +297,12 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
output
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpac
e
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights_device_result
.
mDesc
.
GetElementSpac
e
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
output
.
mDesc
.
GetElementSpac
e
());
DeviceMem
in_device_buf
(
input
.
GetMemorySiz
e
());
DeviceMem
wei_device_buf
(
weights_device_result
.
GetMemorySiz
e
());
DeviceMem
out_device_buf
(
output
.
GetMemorySiz
e
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
out_device_buf
.
ToDevice
(
output
.
mData
.
data
());
in_device_buf
.
ToDevice
(
input
.
data
());
out_device_buf
.
ToDevice
(
output
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
...
...
@@ -359,10 +360,9 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
// wei_device_buf.SetZero();
//}
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
N
,
K
,
C
,
...
...
@@ -390,7 +390,7 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
std
::
string
conv_name
=
conv_ptr
->
GetTypeString
();
float
ave_time
=
0
;
if
(
std
::
is_same
<
InDataType
,
ck
::
bhalf_t
>
::
value
&&
split_k
>
1
)
if
constexpr
(
std
::
is_same
_v
<
InDataType
,
ck
::
bhalf_t
>
&&
split_k
>
1
)
{
// alloc work space
size_t
bwd_weight_workspace_size
=
conv_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
...
...
@@ -431,9 +431,9 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
if
(
do_verification
)
{
wei_device_buf
.
FromDevice
(
weights_device_result
.
mData
.
data
());
wei_device_buf
.
FromDevice
(
weights_device_result
.
data
());
success
=
ck
::
utils
::
check_err
(
weights_host_result
.
mData
,
weights_device_result
.
mData
);
success
=
ck
::
utils
::
check_err
(
weights_host_result
,
weights_device_result
);
if
(
success
==
false
)
{
...
...
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
View file @
e4e99a49
...
...
@@ -6,17 +6,19 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/array.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -45,17 +47,17 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
int
StrideD1
,
int
StrideE
)
{
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -66,11 +68,11 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -121,8 +123,7 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
({
M
,
N
}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
...
...
@@ -149,16 +150,16 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemory
Size
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemory
Size
());
DeviceMem
d0_m_n_device_buf
(
d0_m_n
.
GetMemory
Size
());
DeviceMem
d1_m_n_device_buf
(
d1_m_n
.
GetMemory
Size
());
DeviceMem
e_device_buf
(
e_m_n_device_result
.
GetMemory
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_m_n_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
data
());
d1_m_n_device_buf
.
ToDevice
(
d1_m_n
.
data
());
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
...
...
@@ -170,18 +171,18 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
2
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
(),
d1_m_n_device_buf
.
GetDeviceBuffer
()},
ck
::
utils
::
to_array
(
{
d0_m_n_device_buf
.
GetDeviceBuffer
(),
d1_m_n_device_buf
.
GetDeviceBuffer
()}
)
,
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
ck
::
utils
::
to_array
(
{
StrideD0
,
StrideD1
}
)
,
StrideE
,
a_element_op
,
b_element_op
,
...
...
@@ -199,7 +200,7 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
...
...
@@ -221,10 +222,9 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
}
else
...
...
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
View file @
e4e99a49
...
...
@@ -4,17 +4,18 @@
#pragma once
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -74,22 +75,21 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
int
StrideC
,
int
StrideD0
)
{
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -99,22 +99,18 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
BiasDataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
({
M
}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"reduce0_m: "
<<
reduce0_m_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"reduce1_m: "
<<
reduce1_m_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"reduce0_m: "
<<
reduce0_m_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"reduce1_m: "
<<
reduce1_m_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
...
...
@@ -217,23 +213,21 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce0_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce0_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce1_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce1_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemorySize
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemorySize
());
DeviceMem
c_device_buf
(
c_m_n_device_result
.
GetMemorySize
());
DeviceMem
bias_device_buf
(
bias_n
.
GetMemorySize
());
DeviceMem
d0_device_buf
(
d0_m_n
.
GetMemorySize
());
DeviceMem
reduce0_device_buf
(
reduce0_m_device_result
.
GetMemorySize
());
DeviceMem
reduce1_device_buf
(
reduce1_m_device_result
.
GetMemorySize
());
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduce0_device_buf
.
GetDeviceBuffer
(),
reduce1_device_buf
.
GetDeviceBuffer
()};
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
instance
::
DeviceGemmBiasAddReduceNoOpPtr
>
gemm_ptrs
;
...
...
@@ -319,7 +313,7 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
+
2
_uz
*
M
*
N
;
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
BiasDataType
)
*
M
*
N
+
...
...
@@ -343,33 +337,29 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
.
mData
,
reduce0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
.
mData
,
reduce1_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
,
reduce0_m_host_result
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
,
reduce1_m_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
reduce0_m_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
reduce0_m_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
reduce0_m_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
reduce0_m_device_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
reduce1_m_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
reduce1_m_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
reduce1_m_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
reduce1_m_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_gemm_bilinear_impl.hpp
View file @
e4e99a49
...
...
@@ -6,17 +6,19 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/array.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -44,17 +46,17 @@ bool profile_gemm_bilinear_impl(int do_verification,
float
alpha
,
float
beta
)
{
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -64,10 +66,10 @@ bool profile_gemm_bilinear_impl(int do_verification,
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -116,8 +118,7 @@ bool profile_gemm_bilinear_impl(int do_verification,
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
({
M
,
N
}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
...
...
@@ -144,14 +145,14 @@ bool profile_gemm_bilinear_impl(int do_verification,
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
d_m_n_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemory
Size
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemory
Size
());
DeviceMem
d_m_n_device_buf
(
d_m_n
.
GetMemory
Size
());
DeviceMem
e_device_buf
(
e_m_n_device_result
.
GetMemory
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_m_n_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
d_m_n_device_buf
.
ToDevice
(
d_m_n
.
data
());
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
...
...
@@ -163,17 +164,17 @@ bool profile_gemm_bilinear_impl(int do_verification,
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_m_n_device_buf
.
GetDeviceBuffer
()},
ck
::
utils
::
to_array
(
{
d_m_n_device_buf
.
GetDeviceBuffer
()}
)
,
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
ck
::
utils
::
to_array
(
{
StrideD
}
)
,
StrideE
,
a_element_op
,
b_element_op
,
...
...
@@ -191,7 +192,7 @@ bool profile_gemm_bilinear_impl(int do_verification,
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
...
...
@@ -213,10 +214,9 @@ bool profile_gemm_bilinear_impl(int do_verification,
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
}
else
...
...
profiler/include/profile_gemm_impl.hpp
View file @
e4e99a49
...
...
@@ -8,17 +8,18 @@
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -43,17 +44,17 @@ int profile_gemm_impl(int do_verification,
{
bool
pass
=
true
;
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -62,9 +63,9 @@ int profile_gemm_impl(int do_verification,
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -86,12 +87,12 @@ int profile_gemm_impl(int do_verification,
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemory
Size
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemory
Size
());
DeviceMem
c_device_buf
(
c_m_n_device_result
.
GetMemory
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemm
<
ALayout
,
BLayout
,
...
...
@@ -137,10 +138,9 @@ int profile_gemm_impl(int do_verification,
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
...
...
@@ -163,7 +163,7 @@ int profile_gemm_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
...
...
@@ -185,18 +185,17 @@ int profile_gemm_impl(int do_verification,
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_gemm_reduce_impl.hpp
View file @
e4e99a49
...
...
@@ -4,17 +4,18 @@
#pragma once
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -73,17 +74,17 @@ bool profile_gemm_reduce_impl(int do_verification,
{
bool
pass
=
true
;
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -91,22 +92,18 @@ bool profile_gemm_reduce_impl(int do_verification,
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
HostTensorDescriptor
({
M
}));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
({
M
}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"reduce0_m: "
<<
reduce0_m_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"reduce1_m: "
<<
reduce1_m_host_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"reduce0_m: "
<<
reduce0_m_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"reduce1_m: "
<<
reduce1_m_host_result
.
Get
Desc
()
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
...
...
@@ -189,19 +186,17 @@ bool profile_gemm_reduce_impl(int do_verification,
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce0_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce0_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce1_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce1_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemorySize
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemorySize
());
DeviceMem
c_device_buf
(
c_m_n_device_result
.
GetMemorySize
());
DeviceMem
reduce0_device_buf
(
reduce0_m_device_result
.
GetMemorySize
());
DeviceMem
reduce1_device_buf
(
reduce1_m_device_result
.
GetMemorySize
());
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduce0_device_buf
.
GetDeviceBuffer
(),
reduce1_device_buf
.
GetDeviceBuffer
()};
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
instance
::
DeviceGemmReduceNoOpPtr
>
gemm_ptrs
;
...
...
@@ -287,7 +282,7 @@ bool profile_gemm_reduce_impl(int do_verification,
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
CDataType
)
*
N
;
...
...
@@ -309,33 +304,29 @@ bool profile_gemm_reduce_impl(int do_verification,
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
.
mData
,
reduce0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
.
mData
,
reduce1_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
,
reduce0_m_host_result
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
,
reduce1_m_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
reduce0_m_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
reduce0_m_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
reduce0_m_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
reduce0_m_device_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
reduce1_m_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
reduce1_m_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
reduce1_m_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
reduce1_m_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_gemm_splitk_impl.hpp
View file @
e4e99a49
...
...
@@ -8,17 +8,18 @@
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -44,17 +45,17 @@ bool profile_gemm_splitk_impl(int do_verification,
{
bool
pass
=
true
;
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -63,9 +64,9 @@ bool profile_gemm_splitk_impl(int do_verification,
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -87,13 +88,13 @@ bool profile_gemm_splitk_impl(int do_verification,
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
a_device_buf
(
a_m_k
.
GetMemory
Size
());
DeviceMem
b_device_buf
(
b_k_n
.
GetMemory
Size
());
DeviceMem
c_device_buf
(
c_m_n_device_result
.
GetMemory
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmSplitK
<
ALayout
,
BLayout
,
...
...
@@ -139,10 +140,9 @@ bool profile_gemm_splitk_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
...
...
@@ -166,7 +166,7 @@ bool profile_gemm_splitk_impl(int do_verification,
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
...
...
@@ -188,18 +188,17 @@ bool profile_gemm_splitk_impl(int do_verification,
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_grouped_conv_fwd_impl.hpp
View file @
e4e99a49
...
...
@@ -8,19 +8,21 @@
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/array.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -66,7 +68,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
...
...
@@ -84,9 +86,9 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
Tensor
<
OutDataType
>
host_output
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
device_output
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"input: "
<<
input
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"input: "
<<
input
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
Get
Desc
()
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
Get
Desc
()
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -100,12 +102,12 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
weight
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weight
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
in_device_buf
(
input
.
GetMemory
Size
());
DeviceMem
wei_device_buf
(
weight
.
GetMemory
Size
());
DeviceMem
out_device_buf
(
device_output
.
GetMemory
Size
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
mData
.
data
());
in_device_buf
.
ToDevice
(
input
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
data
());
// run reference op
if
(
do_verification
)
...
...
@@ -163,19 +165,20 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
// profile device op instances
bool
pass
=
true
;
using
ck
::
utils
::
empty_array
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{}
,
empty_array
()
,
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}}
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}}
,
empty_array
()
,
empty_array
()
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
...
...
@@ -218,17 +221,17 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
out_device_buf
.
FromDevice
(
device_output
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
.
mData
,
host_output
.
mData
);
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
weight
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
weight
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_grouped_gemm_impl.hpp
View file @
e4e99a49
...
...
@@ -6,18 +6,19 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -43,17 +44,17 @@ bool profile_grouped_gemm_impl(int do_verification,
bool
pass
=
true
;
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
is_same
_v
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -79,9 +80,9 @@ bool profile_grouped_gemm_impl(int do_verification,
c_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
m
Desc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
m
Desc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
c_m_n_device_results
[
i
].
m
Desc
<<
std
::
endl
;
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
Get
Desc
()
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
Get
Desc
()
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
c_m_n_device_results
[
i
].
Get
Desc
()
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
...
...
@@ -132,17 +133,15 @@ bool profile_grouped_gemm_impl(int do_verification,
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_m_k
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_k_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
a_m_k
[
i
].
GetMemorySize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
b_k_n
[
i
].
GetMemorySize
()));
c_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
s
izeof
(
CDataType
)
*
c_m_n_device_results
[
i
].
mDesc
.
GetElementSpace
Size
()));
c_device_buf
.
emplace_back
(
s
td
::
make_unique
<
DeviceMem
>
(
c_m_n_device_results
[
i
].
GetMemory
Size
()));
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
c_device_buf
[
i
]
->
ToDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
data
());
c_device_buf
[
i
]
->
ToDevice
(
c_m_n_device_results
[
i
].
data
());
gemm_descs
.
push_back
({
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
...
...
@@ -207,7 +206,7 @@ bool profile_grouped_gemm_impl(int do_verification,
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
flop
+=
2
_uz
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
...
...
@@ -232,7 +231,7 @@ bool profile_grouped_gemm_impl(int do_verification,
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
data
());
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{}));
...
...
@@ -257,19 +256,16 @@ bool profile_grouped_gemm_impl(int do_verification,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
].
mData
,
c_m_n_host_result
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
],
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
],
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
]
.
mData
,
","
)
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
],
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_groupnorm_impl.hpp
View file @
e4e99a49
...
...
@@ -9,11 +9,11 @@
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -65,14 +65,14 @@ bool profile_groupnorm_impl(int do_verification,
beta
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
x_dev
(
x
.
GetMemory
Size
());
DeviceMem
gamma_dev
(
gamma
.
GetMemory
Size
());
DeviceMem
beta_dev
(
beta
.
GetMemory
Size
());
DeviceMem
y_dev
(
y
.
GetMemory
Size
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
data
());
beta_dev
.
ToDevice
(
beta
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceLayernorm
<
XDataType
,
...
...
@@ -116,10 +116,10 @@ bool profile_groupnorm_impl(int do_verification,
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
x
.
GetStrides
().
begin
(),
x
.
GetStrides
().
end
()},
gammaBetaStride
,
gammaBetaStride
,
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
().
begin
(),
y
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
y
.
GetStrides
().
begin
(),
y
.
GetStrides
().
end
()},
reduce_dim
,
1e-6
,
x_dev
.
GetDeviceBuffer
(),
...
...
@@ -141,10 +141,10 @@ bool profile_groupnorm_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
beta
.
mDesc
.
GetElementSize
()
*
sizeof
(
BetaDataType
)
+
y
.
mDesc
.
GetElementSize
()
*
sizeof
(
YDataType
);
std
::
size_t
num_bytes
=
x
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
beta
.
GetElementSize
()
*
sizeof
(
BetaDataType
)
+
y
.
GetElementSize
()
*
sizeof
(
YDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -161,16 +161,15 @@ bool profile_groupnorm_impl(int do_verification,
if
(
do_verification
)
{
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
bool
pass
=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"x : "
,
x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_y : "
,
host_y
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"y : "
,
y
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"x : "
,
x
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_y : "
,
host_y
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"y : "
,
y
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
...
...
profiler/include/profile_layernorm_impl.hpp
View file @
e4e99a49
...
...
@@ -9,11 +9,11 @@
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
namespace
ck
{
namespace
profiler
{
...
...
@@ -72,14 +72,14 @@ void profile_layernorm_impl(int do_verification,
y
.
GenerateTensorValue
(
GeneratorTensor_3
<
YDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
x_dev
(
x
.
GetMemory
Size
());
DeviceMem
gamma_dev
(
gamma
.
GetMemory
Size
());
DeviceMem
beta_dev
(
beta
.
GetMemory
Size
());
DeviceMem
y_dev
(
y
.
GetMemory
Size
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
data
());
beta_dev
.
ToDevice
(
beta
.
data
());
constexpr
int
NumReduceDim
=
Rank
-
1
;
...
...
@@ -149,10 +149,10 @@ void profile_layernorm_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
beta
.
mDesc
.
GetElementSize
()
*
sizeof
(
BetaDataType
)
+
y
.
mDesc
.
GetElementSize
()
*
sizeof
(
YDataType
);
std
::
size_t
num_bytes
=
x
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
beta
.
GetElementSize
()
*
sizeof
(
BetaDataType
)
+
y
.
GetElementSize
()
*
sizeof
(
YDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -168,16 +168,15 @@ void profile_layernorm_impl(int do_verification,
if
(
do_verification
)
{
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
bool
pass
=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"x : "
,
x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_y : "
,
host_y
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"y : "
,
y
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"x : "
,
x
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_y : "
,
host_y
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"y : "
,
y
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
...
...
profiler/include/profile_normalization_impl.hpp
View file @
e4e99a49
...
...
@@ -6,15 +6,16 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -87,7 +88,7 @@ void profile_normalization_impl(int do_verification,
Tensor
<
InDataType
>
in
=
in_strides
.
empty
()
?
Tensor
<
InDataType
>
(
in_length
)
:
Tensor
<
InDataType
>
(
in_length
,
in_strides
);
Tensor
<
OutDataType
>
out
(
in
.
m
Desc
);
Tensor
<
OutDataType
>
out
(
in
.
Get
Desc
()
);
switch
(
init_method
)
{
...
...
@@ -107,13 +108,13 @@ void profile_normalization_impl(int do_verification,
Tensor
<
OutDataType
>
out_ref
(
out
);
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
Size
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
out_dev
.
ToDevice
(
out
.
mData
.
data
());
DeviceMem
in_dev
(
in
.
GetMemory
Size
());
DeviceMem
out_dev
(
out
.
GetMemory
Size
());
in_dev
.
ToDevice
(
in
.
data
());
out_dev
.
ToDevice
(
out
.
data
());
std
::
vector
<
index_t
>
i_in_lengths
(
in
.
mDesc
.
GetLengths
().
begin
(),
in
.
mDesc
.
GetLengths
().
end
());
std
::
vector
<
index_t
>
i_in_strides
(
in
.
mDesc
.
GetStrides
().
begin
(),
in
.
mDesc
.
GetStrides
().
end
());
std
::
vector
<
index_t
>
i_in_lengths
(
in
.
GetLengths
().
begin
(),
in
.
GetLengths
().
end
());
std
::
vector
<
index_t
>
i_in_strides
(
in
.
GetStrides
().
begin
(),
in
.
GetStrides
().
end
());
// add device softmax instances
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -189,9 +190,8 @@ void profile_normalization_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
in
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
std
::
size_t
num_bytes
=
in
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
GetElementSize
()
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -213,30 +213,27 @@ void profile_normalization_impl(int do_verification,
ReferenceFactory
{}.
MakeInvoker
().
Run
({
in
,
out_ref
,
alpha
,
beta
,
reduce_dims
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
out_dev
.
FromDevice
(
out
.
data
());
bool
pass
;
if
(
std
::
is_same
<
InDataType
,
int8_t
>
::
value
)
if
constexpr
(
std
::
is_same
_v
<
InDataType
,
int8_t
>
)
{
pass
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: Incorrect results!"
,
0
,
1
);
pass
=
ck
::
utils
::
check_err
(
out
,
out_ref
,
"Error: Incorrect results!"
,
0
,
1
);
if
(
do_log
)
{
LogRangeAsType
<
int
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"out_ref : "
,
out_ref
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"out : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"in : "
,
in
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"out_ref : "
,
out_ref
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"out : "
,
out
,
","
)
<<
std
::
endl
;
}
}
else
{
pass
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
pass
=
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_ref : "
,
out_ref
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_ref : "
,
out_ref
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out : "
,
out
,
","
)
<<
std
::
endl
;
}
}
...
...
profiler/include/profile_reduce_impl.hpp
View file @
e4e99a49
...
...
@@ -3,11 +3,13 @@
#pragma once
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "ck/library/utility/host_common_util.hpp"
...
...
@@ -214,11 +216,11 @@ bool profile_reduce_impl_impl(bool do_verification,
Tensor
<
int32_t
>
out_indices_ref
(
outLengths
);
Tensor
<
int32_t
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
auto
inStrides
=
in
.
GetStrides
();
auto
outStrides
=
out
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
size_t
invariant_total_length
=
out
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
...
...
@@ -245,20 +247,21 @@ bool profile_reduce_impl_impl(bool do_verification,
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
{
ck
::
ranges
::
copy
(
out_ref
,
out
.
begin
());
}
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
in_dev
(
in
.
GetMemory
Size
());
DeviceMem
out_dev
(
out
.
GetMemory
Size
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
in_dev
.
ToDevice
(
in
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
out_dev
.
ToDevice
(
out
.
data
());
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int
)
:
0
;
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
GetElementSize
()
*
sizeof
(
int
)
:
0
;
DeviceMem
out_indices_dev
(
indicesSizeInBytes
);
...
...
@@ -331,13 +334,13 @@ bool profile_reduce_impl_impl(bool do_verification,
NumReduceDim
,
PropagateNan
,
OutputIndex
>
hostReduce
(
in
.
m
Desc
,
out_ref
.
m
Desc
,
invariantDims
,
reduceDims
);
hostReduce
(
in
.
Get
Desc
()
,
out_ref
.
Get
Desc
()
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
in
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
out_ref
.
data
(),
out_indices_ref
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
...
...
@@ -398,14 +401,13 @@ bool profile_reduce_impl_impl(bool do_verification,
{
bool
single_pass
;
out_dev
.
FromDevice
(
out
.
mData
.
data
());
single_pass
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
out_dev
.
FromDevice
(
out
.
data
());
single_pass
=
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
OutputIndex
)
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
single_pass
=
single_pass
&&
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
out_indices_dev
.
FromDevice
(
out_indices
.
data
());
single_pass
=
single_pass
&&
ck
::
utils
::
check_err
(
out_indices
,
out_indices_ref
);
};
if
(
!
single_pass
)
...
...
@@ -418,18 +420,16 @@ bool profile_reduce_impl_impl(bool do_verification,
if
(
do_dumpout
)
{
dumpBufferToFile
(
"dump_in.bin"
,
in
.
mData
.
data
(),
in
.
mDesc
.
GetElementSize
());
dumpBufferToFile
(
"dump_out.bin"
,
out
.
mData
.
data
(),
out
.
mDesc
.
GetElementSize
());
dumpBufferToFile
(
"dump_out_host.bin"
,
out_ref
.
mData
.
data
(),
out_ref
.
mDesc
.
GetElementSize
());
dumpBufferToFile
(
"dump_in.bin"
,
in
.
data
(),
in
.
GetElementSize
());
dumpBufferToFile
(
"dump_out.bin"
,
out
.
data
(),
out
.
GetElementSize
());
dumpBufferToFile
(
"dump_out_host.bin"
,
out_ref
.
data
(),
out_ref
.
GetElementSize
());
if
(
OutputIndex
)
{
dumpBufferToFile
(
"dump_indices.bin"
,
out_indices
.
mData
.
data
(),
out_indices
.
mDesc
.
GetElementSize
());
dumpBufferToFile
(
"dump_indices.bin"
,
out_indices
.
data
(),
out_indices
.
GetElementSize
());
dumpBufferToFile
(
"dump_indices_host.bin"
,
out_indices_ref
.
mData
.
data
(),
out_indices_ref
.
mDesc
.
GetElementSize
());
out_indices_ref
.
data
(),
out_indices_ref
.
GetElementSize
());
};
};
};
...
...
test/data_type/int4.cpp
View file @
e4e99a49
...
...
@@ -98,8 +98,8 @@ TEST(Int4, CopyAsI8PositiveValue)
d_src_i4
.
ToDevice
(
h_src_i4
.
data
());
copy
<<<
1
,
64
>>>
(
reinterpret
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
reinterpret
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
copy
<<<
1
,
64
>>>
(
static
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
static
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
SIZE
);
hip_check_error
(
hipDeviceSynchronize
());
d_dst_i8
.
FromDevice
(
h_dst_i8
.
data
());
...
...
@@ -125,8 +125,8 @@ TEST(Int4, DISABLED_CopyAsI8NegativeValue)
d_src_i4
.
ToDevice
(
h_src_i4
.
data
());
copy
<<<
1
,
64
>>>
(
reinterpret
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
reinterpret
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
copy
<<<
1
,
64
>>>
(
static
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
static
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
SIZE
);
hip_check_error
(
hipDeviceSynchronize
());
d_dst_i8
.
FromDevice
(
h_dst_i8
.
data
());
...
...
@@ -152,8 +152,8 @@ TEST(Int4, CopyAsI8NegativeValueStaticCast)
d_src_i4
.
ToDevice
(
h_src_i4
.
data
());
copy_with_static_cast
<<<
1
,
64
>>>
(
reinterpret
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
reinterpret
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
copy_with_static_cast
<<<
1
,
64
>>>
(
static
_cast
<
const
int4_t
*>
(
d_src_i4
.
GetDeviceBuffer
()),
static
_cast
<
std
::
int8_t
*>
(
d_dst_i8
.
GetDeviceBuffer
()),
SIZE
);
hip_check_error
(
hipDeviceSynchronize
());
d_dst_i8
.
FromDevice
(
h_dst_i8
.
data
());
...
...
test/gemm/gemm_util.hpp
View file @
e4e99a49
...
...
@@ -5,11 +5,13 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/
reference_tensor_operation/cpu/reference_gemm
.hpp"
#include "ck/library/
utility/literals
.hpp"
namespace
ck
{
namespace
gemm_util
{
...
...
@@ -71,9 +73,9 @@ bool RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
A
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
B
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
C
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
a_m_k_device_buf
(
A
.
GetMemory
Size
());
DeviceMem
b_k_n_device_buf
(
B
.
GetMemory
Size
());
DeviceMem
c_m_n_device_buf
(
C
.
GetMemory
Size
());
auto
invoker_ptr
=
gemmPtr
->
MakeInvokerPointer
();
auto
argument_ptr
=
...
...
@@ -92,10 +94,10 @@ bool RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
if
(
gemmPtr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
a_m_k_device_buf
.
ToDevice
(
A
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
B
.
mData
.
data
());
a_m_k_device_buf
.
ToDevice
(
A
.
data
());
b_k_n_device_buf
.
ToDevice
(
B
.
data
());
invoker_ptr
->
Run
(
argument_ptr
.
get
());
c_m_n_device_buf
.
FromDevice
(
C
.
mData
.
data
());
c_m_n_device_buf
.
FromDevice
(
C
.
data
());
return
true
;
}
...
...
@@ -124,17 +126,17 @@ struct TestGemm
{
auto
PrepareGemmTensor
(
const
ck
::
gemm_util
::
GemmParams
&
params
)
{
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
::
value
)
if
constexpr
(
std
::
is_same
_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -204,29 +206,29 @@ struct TestGemm
{
// Assert
bool
res
=
false
;
if
(
std
::
is_same
<
CDataType
,
float
>
::
value
)
if
constexpr
(
std
::
is_same
_v
<
CDataType
,
float
>
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
ck
::
half_t
>
::
value
)
else
if
constexpr
(
std
::
is_same
_v
<
CDataType
,
ck
::
half_t
>
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
ck
::
bhalf_t
>
::
value
)
else
if
constexpr
(
std
::
is_same
_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
int8_t
>
::
value
)
else
if
constexpr
(
std
::
is_same
_v
<
CDataType
,
int8_t
>
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
double
>
::
value
)
else
if
constexpr
(
std
::
is_same
_v
<
CDataType
,
double
>
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
...
...
Prev
1
…
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment