Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e2878e25
"vscode:/vscode.git/clone" did not exist on "26e6b381276f8bd66b8d8c9a7aa690f055326ba3"
Commit
e2878e25
authored
May 17, 2023
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migx-jit-lib
parents
1ec96717
642d5e91
Changes
105
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1571 additions
and
53 deletions
+1571
-53
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
...ce/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
+5
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp
...e/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp
+4
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
.../gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
+88
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
...n/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
+4
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
.../ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+70
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
...e/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
...or_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
+2
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
...on/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
+2
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+13
-7
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
...pl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
+4
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+2
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp
...e_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp
+2
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
...e_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
.../impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+2
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
...u/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
+613
-0
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
...r_operation/gpu/device/impl/device_normalization_impl.hpp
+24
-25
include/ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp
...tion/gpu/device/impl/device_normalization_splitk_impl.hpp
+658
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+23
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+48
-0
No files found.
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -63,7 +63,8 @@ __global__ void
const
Block2ETileMap
block_2_etile_map
,
index_t
NRaw
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemmWelford
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemmWelford
::
template
Run
<
HasMainKBlockLoop
>(
...
...
@@ -806,7 +807,7 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
// workspace for welford intermediate mean
workspace_size
+=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
)
+
64
;
// workspace for welford intermediate
mean
// workspace for welford intermediate
variance
workspace_size
+=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
)
+
64
;
// workspace for welford intermediate count
...
...
@@ -854,7 +855,8 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -60,7 +60,8 @@ __global__ void
const
RsGridDescriptor_MBlock_MPerBlock
rs_grid_desc_mblock_mperblock
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
...
...
@@ -554,7 +555,8 @@ struct DeviceGemmMultipleDMultipleR_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
View file @
e2878e25
...
...
@@ -273,7 +273,10 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
cde_element_op_
{
cde_element_op
},
MRaw_
{
M
},
NRaw_
{
N
},
KRaw_
{
K
}
{
a_grid_desc_k0_m_k1_
=
DeviceOp
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceOp
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
...
...
@@ -335,6 +338,11 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking vector load/store
index_t
MRaw_
;
index_t
NRaw_
;
index_t
KRaw_
;
};
// Invoker
...
...
@@ -488,6 +496,85 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
{
return
false
;
}
// check vector load/store
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// check vector load of A
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
MRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector laod of B
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
NRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector load of Ds
// only support RowMajor for now
bool
all_valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
if
constexpr
(
!
is_same_v
<
DLayout
,
Row
>
)
{
all_valid
=
false
;
}
});
if
(
!
all_valid
)
{
return
false
;
}
// check vector store of E
// only support RowMajor for now
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -51,7 +51,8 @@ __global__ void
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
...
...
@@ -490,7 +491,8 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
View file @
e2878e25
...
...
@@ -239,7 +239,10 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
MRaw_
{
M
},
NRaw_
{
N
},
KRaw_
{
K
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmWmma_CShuffle
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
...
...
@@ -276,6 +279,10 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
// for checking vector load/store
index_t
MRaw_
;
index_t
NRaw_
;
index_t
KRaw_
;
};
// Invoker
...
...
@@ -417,6 +424,68 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
return
false
;
}
// check vector load/store
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// check vector load of A
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
MRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector laod of B
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
NRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector store of C
// only support RowMajor for now
if
constexpr
(
is_same_v
<
CLayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
View file @
e2878e25
...
...
@@ -428,7 +428,7 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
return
false
;
}
}
else
if
(
ck
::
get_device_name
()
==
"gfx90a"
)
else
if
(
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -574,7 +574,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
View file @
e2878e25
...
...
@@ -648,7 +648,8 @@ struct DeviceGemmLayerNorm_Xdl_CShuffle : public BaseOperator
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
e2878e25
...
...
@@ -114,7 +114,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
using
DefaultBlock2CTileMap
=
typename
GridwiseGemm
::
DefaultBlock2CTileMap
;
// Invoker
struct
Invoker
:
public
BaseInvoker
...
...
@@ -138,8 +139,9 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
"setting"
);
}
const
auto
b2c_map
=
DefaultBlock2CTileMap
{};
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
karg
);
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
b2c_map
.
CalculateGridSize
(
karg
.
M
,
karg
.
N
,
karg
.
k_batch
);
const
auto
K0
=
karg
.
K0
;
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
...
...
@@ -152,7 +154,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
)));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
karg
);
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
karg
,
b2c_map
);
};
if
(
has_main_k0_block_loop
)
...
...
@@ -162,7 +164,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2_simplified
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
>
;
InMemoryDataOperationEnum
::
Set
,
DefaultBlock2CTileMap
>
;
Run
(
kernel
);
}
...
...
@@ -171,7 +174,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2_simplified
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
>
;
InMemoryDataOperationEnum
::
AtomicAdd
,
DefaultBlock2CTileMap
>
;
Run
(
kernel
);
}
...
...
@@ -183,7 +187,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2_simplified
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
>
;
InMemoryDataOperationEnum
::
Set
,
DefaultBlock2CTileMap
>
;
Run
(
kernel
);
}
...
...
@@ -192,7 +197,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2_simplified
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
AtomicAdd
>
;
InMemoryDataOperationEnum
::
AtomicAdd
,
DefaultBlock2CTileMap
>
;
Run
(
kernel
);
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -37,7 +37,8 @@ __global__ void
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
...
...
@@ -703,7 +704,8 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
e2878e25
...
...
@@ -130,7 +130,8 @@ __global__ void
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -78,7 +78,8 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -155,7 +155,8 @@ __global__ void
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
...
...
@@ -810,7 +811,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
return
false
;
}
}
else
if
(
get_device_name
()
==
"gfx90a"
)
else
if
(
get_device_name
()
==
"gfx90a"
||
get_device_name
()
==
"gfx940"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
View file @
e2878e25
...
...
@@ -135,7 +135,8 @@ __global__ void
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
...
@@ -684,7 +685,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
return
false
;
}
}
else
if
(
get_device_name
()
==
"gfx90a"
)
else
if
(
get_device_name
()
==
"gfx90a"
||
get_device_name
()
==
"gfx940"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
e2878e25
...
...
@@ -38,7 +38,8 @@ __global__ void
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
0 → 100644
View file @
e2878e25
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/ck.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_splitk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
const
index_t
group_count
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
__shared__
uint8_t
p_shared
[
shared_size
];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
gemm_desc_ptr
[
group_id
].
block_start_
&&
block_id
<
gemm_desc_ptr
[
group_id
].
block_end_
))
&&
left
<=
right
)
{
if
(
block_id
<
gemm_desc_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
>(
gemm_desc_ptr
[
group_id
].
karg_
,
static_cast
<
void
*>
(
p_shared
),
gemm_desc_ptr
[
group_id
].
block_2_ctile_map_
);
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
// Current implementation does not support multiple D fusions.
enable_if_t
<
AK1
==
BK1
&&
is_same_v
<
DsLayout
,
ck
::
Tuple
<
>
>
&&
is_same_v
<
DsDataType
,
ck
::
Tuple
<>>
,
bool
>
=
false
>
struct
DeviceGroupedGemmXdlSplitKCShuffle
:
public
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static_assert
(
KPerBlock
%
AK1
==
0
);
static
constexpr
index_t
K0PerBlock
=
KPerBlock
/
AK1
;
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
EDataType
,
ALayout
,
BLayout
,
ELayout
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
GemmSpec
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
AK1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferScalarPerVector_NPerBlock
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
;
using
CGridDesc_M_N
=
typename
GridwiseGemm
::
CGridDesc_M_N
;
using
Block2ETileMapKSplit
=
BlockToCTileMap_KSplit_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
;
// Block2CTileMap configuration parameter.
static
constexpr
index_t
B2E_M01
=
8
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMap
<
Block2ETileMapKSplit
>
;
using
KernelArgument
=
typename
GridwiseGemm
::
Argument
;
struct
GemmTransKernelArg
{
KernelArgument
karg_
;
GroupedGemmBlock2ETileMap
block_2_ctile_map_
;
index_t
block_start_
,
block_end_
;
GemmTransKernelArg
()
=
default
;
GemmTransKernelArg
(
KernelArgument
&&
karg
,
GroupedGemmBlock2ETileMap
&&
b2c_map
,
index_t
block_start
,
index_t
block_end
)
:
karg_
{
karg
},
block_2_ctile_map_
{
b2c_map
},
block_start_
{
block_start
},
block_end_
{
block_end
}
{
}
};
static
constexpr
index_t
DefaultKBatch
=
1
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
)
:
Argument
(
p_As
,
p_Bs
,
p_Es
,
gemm_descs
,
DefaultKBatch
)
{
// TODO: use occupancy api to calculate appropriate batch size.
}
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
index_t
kbatch
)
:
K_BATCH
{
kbatch
}
{
grid_size_
=
0
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/c.size"
);
}
gemm_kernel_args_
.
reserve
(
group_count_
);
skipped_group_count_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
++
i
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
if
(
M
==
0
)
{
skipped_group_count_
++
;
continue
;
}
const
index_t
stride_a
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
stride_b
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
stride_c
=
gemm_descs
[
i
].
stride_C_
;
const
index_t
m_padded
=
GridwiseGemm
::
CalculateMPadded
(
M
);
const
index_t
n_padded
=
GridwiseGemm
::
CalculateNPadded
(
N
);
const
index_t
k_padded
=
GridwiseGemm
::
CalculateKPadded
(
K
,
K_BATCH
);
const
index_t
k0
=
GridwiseGemm
::
CalculateK0
(
K
,
K_BATCH
);
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
M
,
N
,
m_padded
,
n_padded
,
stride_c
);
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
K_BATCH
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
c_grid_desc_m_n
);
const
index_t
block_start
=
grid_size_
;
const
index_t
block_end
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
// block-to-e-tile map
auto
grouped_block_2_ctile_map
=
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
block_start
);
auto
karg
=
KernelArgument
{
type_convert
<
const
ADataType
*>
(
p_As
[
i
]),
type_convert
<
const
BDataType
*>
(
p_Bs
[
i
]),
type_convert
<
EDataType
*>
(
p_Es
[
i
]),
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
,
m_padded
,
n_padded
,
k_padded
,
k0
,
K_BATCH
};
gemm_kernel_args_
.
emplace_back
(
std
::
move
(
karg
),
std
::
move
(
grouped_block_2_ctile_map
),
block_start
,
block_end
);
}
}
/**
* @brief Recalculate group grid size for all gemms and update B2C maps.
*
* @param[in] kbatch The new splitK parameter value.
*/
void
UpdateKBatch
(
index_t
kbatch
)
{
K_BATCH
=
kbatch
;
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_kernel_args_
.
size
();
++
i
)
{
auto
&
karg
=
gemm_kernel_args_
[
i
].
karg_
;
const
index_t
k_padded
=
GridwiseGemm
::
CalculateKPadded
(
karg
.
K
,
K_BATCH
);
const
index_t
k0
=
GridwiseGemm
::
CalculateK0
(
karg
.
K
,
K_BATCH
);
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
MPadded
,
karg
.
NPadded
,
karg
.
StrideC
);
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
K_BATCH
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
c_grid_desc_m_n
);
const
index_t
block_start
=
grid_size_
;
const
index_t
block_end
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
// block-to-e-tile map
auto
grouped_block_2_ctile_map
=
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
block_start
);
karg
.
KPadded
=
k_padded
;
karg
.
K0
=
k0
;
karg
.
k_batch
=
K_BATCH
;
gemm_kernel_args_
[
i
].
block_2_ctile_map_
=
grouped_block_2_ctile_map
;
gemm_kernel_args_
[
i
].
block_start_
=
block_start
;
gemm_kernel_args_
[
i
].
block_end_
=
block_end
;
}
}
// private:
index_t
K_BATCH
;
index_t
group_count_
;
index_t
skipped_group_count_
;
std
::
vector
<
GemmTransKernelArg
>
gemm_kernel_args_
;
index_t
grid_size_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
K0
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K0
;
bool
all_have_kbatch_gt_one
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
>
1
;
bool
all_have_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
karg
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
if
(
stream_config
.
log_level_
>
0
)
{
karg
.
Print
();
}
auto
kbatch
=
karg
.
k_batch
;
if
(
!
GridwiseGemm
::
CheckValidity
(
karg
))
{
std
::
ostringstream
err
;
err
<<
"Group id: "
<<
i
<<
" has invalid GridwiseGemm settings!"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
K0
=
karg
.
K0
;
bool
not_all_have_main_k0_block_loop_same
=
all_have_main_k0_block_loop
xor
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
bool
not_all_have_kbatch_value_same
=
all_have_kbatch_gt_one
xor
(
kbatch
>
1
);
if
(
not_all_have_main_k0_block_loop_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same value for main_k0_block_loop! in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
not_all_have_kbatch_value_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same kbatch value (=1 or >1)! "
<<
"group ["
<<
i
<<
"], kbatch: "
<<
kbatch
<<
", group [0], kbatch: "
<<
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
<<
" in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
}
hip_check_error
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
gemm_kernel_args_
.
data
(),
arg
.
gemm_kernel_args_
.
size
()
*
sizeof
(
GemmTransKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
all_have_kbatch_gt_one
)
{
for
(
const
auto
&
trans_arg
:
arg
.
gemm_kernel_args_
)
{
const
auto
&
karg
=
trans_arg
.
karg_
;
hip_check_error
(
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
EDataType
)));
}
}
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
gemm_kernel_args_
.
size
());
};
if
(
all_have_main_k0_block_loop
)
{
if
(
all_have_kbatch_gt_one
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_splitk
<
GridwiseGemm
,
GemmTransKernelArg
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_splitk
<
GridwiseGemm
,
GemmTransKernelArg
,
true
,
InMemoryDataOperationEnum
::
Set
>
;
Run
(
kernel
);
}
}
else
{
if
(
all_have_kbatch_gt_one
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_splitk
<
GridwiseGemm
,
GemmTransKernelArg
,
false
,
InMemoryDataOperationEnum
::
AtomicAdd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_splitk
<
GridwiseGemm
,
GemmTransKernelArg
,
false
,
InMemoryDataOperationEnum
::
Set
>
;
Run
(
kernel
);
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_kernel_args_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
a
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
bool
group_arg_valid
=
GridwiseGemm
::
CheckValidity
(
a
);
#if DEBUG_LOG
if
(
not
group_arg_valid
)
{
std
::
cout
<<
"["
<<
__func__
<<
"] group id: "
<<
i
<<
" is not supported!
\n
"
;
a
.
Print
();
}
#endif // DEBUG_LOG
supported
&=
group_arg_valid
;
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Es
,
gemm_descs
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Es
,
gemm_descs
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_XdlSplitK"
<<
"<"
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
","
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
","
<<
std
::
string
(
ELayout
::
name
)[
0
]
<<
","
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
gemm_kernel_args_
.
size
()
*
sizeof
(
GemmTransKernelArg
);
}
static
void
SetKBatchSize
(
Argument
&
arg
,
index_t
kbatch
)
{
arg
.
UpdateKBatch
(
kbatch
);
}
// polymorphic
void
SetKBatchSize
(
BaseArgument
*
p_arg
,
index_t
kbatch
)
const
override
{
return
SetKBatchSize
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kbatch
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
View file @
e2878e25
...
...
@@ -10,8 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_selector.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
@@ -20,6 +19,10 @@ namespace tensor_operation {
namespace
device
{
// Y = Normalization(X, Beta, Gamma)
// M: Invarient length
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
...
...
@@ -68,7 +71,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
index_t
>&
inLengths
,
const
std
::
vector
<
index_t
>&
inStrides
,
int
blkGroupSize
,
int
numBlockTileIteration
)
{
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
...
...
@@ -117,10 +119,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
numBlockTileIteration
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
blkGroupSize
-
reduceLength
;
const
auto
inPad_K
=
K_BlockTileSize
*
numBlockTileIteration
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
...
...
@@ -132,7 +133,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
return
(
in_grid_desc_m_k_padded
);
};
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
));
struct
Argument
:
public
BaseArgument
{
...
...
@@ -162,26 +163,22 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
gammaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
gammaStrides
,
reduceDims
);
betaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
betaStrides
,
reduceDims
);
long_index_t
invariant_
total_
length
;
long_index_t
reduce_
total_
length
;
long_index_t
invariant_length
;
long_index_t
reduce_length
;
std
::
tie
(
invariant_
total_
length
,
reduce_
total_
length
)
=
std
::
tie
(
invariant_length
,
reduce_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
Lengths_
);
blkGroupSize_
=
1
;
numBlockTileIteration_
=
(
reduce_total_length
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
numBlockTileIteration_
=
math
::
integer_divide_ceil
(
reduce_length
,
K_BlockTileSize
);
gridSize_
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
*
blkGroupSize_
;
gridSize_
=
math
::
integer_divide_ceil
(
invariant_length
,
M_BlockTileSize
);
x_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
xStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
x_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
xStrides_
,
numBlockTileIteration_
);
gamma_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
gammaStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
MakeSrc2dDescriptor
(
Lengths_
,
gammaStrides_
,
numBlockTileIteration_
);
beta_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
betaStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
y_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
yStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
MakeSrc2dDescriptor
(
Lengths_
,
betaStrides_
,
numBlockTileIteration_
);
y_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
yStrides_
,
numBlockTileIteration_
);
isSweeponce_
=
x_grid_desc_m_k_
.
GetLength
(
Number
<
1
>
{})
<=
KThreadClusterSize
*
KThreadSliceSize
;
...
...
@@ -202,7 +199,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
YElementwiseOperation
y_elementwise_op_
;
int
blkGroupSize_
;
int
numBlockTileIteration_
;
size_t
gridSize_
;
...
...
@@ -286,6 +282,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
if
(
p_arg_
->
invariant_lowest_length
%
XSrcVectorSize
!=
0
)
return
false
;
if
(
p_arg_
->
invariant_lowest_length
%
YDstVectorSize
!=
0
)
return
false
;
};
}
else
...
...
@@ -295,12 +294,12 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
XSrcVectorSize
!=
0
)
return
false
;
};
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
YDstVectorSize
!=
0
)
{
return
false
;
}
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
YDstVectorSize
!=
0
)
{
return
false
;
}
};
// if fastest dim is not reduced
if
constexpr
(
GammaSrcVectorDim
==
0
)
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp
0 → 100644
View file @
e2878e25
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_1st.hpp"
#include "ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_splitk_2nd.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseWelford
,
typename
XDataType
,
typename
MeanVarDataType
,
typename
ComputeDataType
,
typename
XGridDesc_M_K
,
typename
MeanVarGridDesc_M_KBlock
>
__global__
void
kernel_normalizationSplitK1st
(
const
XGridDesc_M_K
x_grid_desc_m_k
,
const
MeanVarGridDesc_M_KBlock
mean_var_grid_desc_m_kblock
,
index_t
num_k_block_tile_iteration
,
const
XDataType
*
const
__restrict__
p_x_global
,
MeanVarDataType
*
const
__restrict__
p_welford_mean
,
MeanVarDataType
*
const
__restrict__
p_welford_variance
,
int32_t
*
const
__restrict__
p_welford_count
)
{
GridwiseWelford
::
Run
(
x_grid_desc_m_k
,
mean_var_grid_desc_m_kblock
,
num_k_block_tile_iteration
,
p_x_global
,
p_welford_mean
,
p_welford_variance
,
p_welford_count
);
};
template
<
typename
GridwiseWelfordNormalization
,
typename
MeanVarDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
ComputeDataType
,
typename
YElementwiseOperation
,
typename
MeanVarGridDesc_M_KBlock
,
typename
CountGridDesc_M_KBlock
,
typename
XYGammaBetaGridDesc_M_K
>
__global__
void
kernel_normalizationSplitK2nd
(
const
MeanVarGridDesc_M_KBlock
mean_var_grid_desc_m_kblock
,
const
CountGridDesc_M_KBlock
count_grid_desc_m_kblock
,
const
XYGammaBetaGridDesc_M_K
x_grid_desc_m_k
,
const
XYGammaBetaGridDesc_M_K
gamma_grid_desc_m_k
,
const
XYGammaBetaGridDesc_M_K
beta_grid_desc_m_k
,
const
XYGammaBetaGridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_mean_var_count_iteration
,
index_t
num_k_block_tile_iteration
,
index_t
k_grid_size
,
ComputeDataType
epsilon
,
const
MeanVarDataType
*
const
p_mean_global
,
const
MeanVarDataType
*
const
p_variance_global
,
const
int32_t
*
const
p_welford_count_global
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
YElementwiseOperation
y_elementwise_op
)
{
GridwiseWelfordNormalization
::
Run
(
mean_var_grid_desc_m_kblock
,
count_grid_desc_m_kblock
,
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
beta_grid_desc_m_k
,
y_grid_desc_m_k
,
num_k_mean_var_count_iteration
,
num_k_block_tile_iteration
,
k_grid_size
,
epsilon
,
p_mean_global
,
p_variance_global
,
p_welford_count_global
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
y_elementwise_op
);
};
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Y = Normalization(X, Beta, Gamma)
// M: Invarient length
// K: Reduce length (Calculate mean and variance along K dimension)
// eg. Length = [N, C, H, W], reduce dim = [C, H, W]
// Then, M = N, K = C * H * W
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
XYVectorDim
,
index_t
XSrcVectorSize
,
index_t
GammaSrcVectorDim
,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorDim
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorSize
>
struct
DeviceNormalizationSplitKImpl
:
public
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
{
using
MeanVarDataType
=
ComputeDataType
;
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
);
static_assert
(
((
GammaSrcVectorDim
==
0
&&
MThreadSliceSize
%
GammaSrcVectorSize
==
0
)
||
(
GammaSrcVectorDim
==
1
&&
KThreadSliceSize
%
GammaSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or gamma vector sizes configuration, please check!"
);
static_assert
(
((
BetaSrcVectorDim
==
0
&&
MThreadSliceSize
%
BetaSrcVectorSize
==
0
)
||
(
BetaSrcVectorDim
==
1
&&
KThreadSliceSize
%
BetaSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!"
);
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
index_t
>&
inLengths
,
const
std
::
vector
<
index_t
>&
inStrides
,
int
kBlockSize
,
int
numBlockTileIteration
)
{
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numSrcDim
=
Rank
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numSrcDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
numBlockTileIteration
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
kBlockSize
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
template
<
typename
DoPads
,
index_t
MPerTile
,
index_t
KPerTile
>
static
auto
MakeMeanVarDescriptor_M_K
(
index_t
M
,
index_t
K
)
{
const
auto
grid_desc_m_k
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
K
,
I1
));
return
PadTensorDescriptor
(
grid_desc_m_k
,
make_tuple
(
MPerTile
,
KPerTile
),
DoPads
{});
}
template
<
typename
DoPads
,
index_t
MPerTile
,
index_t
KPerTile
>
static
auto
MakeCountDescriptor_M_K
(
index_t
M
,
index_t
K
)
{
const
auto
grid_desc_m_k
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I0
,
I1
));
return
PadTensorDescriptor
(
grid_desc_m_k
,
make_tuple
(
MPerTile
,
KPerTile
),
DoPads
{});
}
using
SrcGridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
Kernel1MeanVarGridDesc_M_KBlock
=
decltype
(
MakeMeanVarDescriptor_M_K
<
Sequence
<
true
,
false
>
,
1
,
1
>
(
1
,
1
));
using
Kernel2MeanVarGridDesc_M_KBlock
=
decltype
(
MakeMeanVarDescriptor_M_K
<
Sequence
<
true
,
true
>
,
1
,
1
>
(
1
,
1
));
using
Kernel2CountGridDesc_M_KBlock
=
decltype
(
MakeCountDescriptor_M_K
<
Sequence
<
true
,
true
>
,
1
,
1
>
(
1
,
1
));
using
GridwiseWelford
=
GridwiseNormalizationSplitK1st
<
XDataType
,
ComputeDataType
,
MeanVarDataType
,
SrcGridDesc_M_K
,
Kernel1MeanVarGridDesc_M_KBlock
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYVectorDim
,
XSrcVectorSize
>
;
using
GridwiseWelfordNormalization
=
GridwiseNormalizationSplitK2nd
<
MeanVarDataType
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
Kernel2MeanVarGridDesc_M_KBlock
,
Kernel2CountGridDesc_M_KBlock
,
SrcGridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYVectorDim
,
YDstVectorSize
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
YElementwiseOperation
y_elementwise_op
,
double
epsilon
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
const
BetaDataType
*
p_beta
,
YDataType
*
p_y
)
:
p_x_
(
p_x
),
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
p_workspace_mean_
{
nullptr
},
p_workspace_var_
{
nullptr
},
p_workspace_count_
{
nullptr
},
y_elementwise_op_
(
y_elementwise_op
)
{
epsilon_
=
static_cast
<
ComputeDataType
>
(
epsilon
);
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
yStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
yStrides
,
reduceDims
);
gammaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
gammaStrides
,
reduceDims
);
betaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
betaStrides
,
reduceDims
);
std
::
tie
(
MRaw_
,
KRaw_
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
Lengths_
);
numBlockTileIteration_
=
1
;
while
(
true
)
{
int
testKGridSize
=
math
::
integer_divide_ceil
(
KRaw_
,
K_BlockTileSize
*
numBlockTileIteration_
);
// we want the kGridSize_ be not more than 128
if
(
testKGridSize
<=
128
)
break
;
++
numBlockTileIteration_
;
};
kGridSize_
=
math
::
integer_divide_ceil
(
KRaw_
,
K_BlockTileSize
*
numBlockTileIteration_
);
gridSize_
=
math
::
integer_divide_ceil
(
MRaw_
,
M_BlockTileSize
)
*
kGridSize_
;
// We do not use vector load for mean, var and count
static
constexpr
index_t
K_MeanVarCountBlockTileSize
=
KThreadClusterSize
;
numMeanVarCountIteration_
=
math
::
integer_divide_ceil
(
kGridSize_
,
K_MeanVarCountBlockTileSize
);
x_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
xStrides_
,
kGridSize_
,
numBlockTileIteration_
);
gamma_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
gammaStrides_
,
kGridSize_
,
numBlockTileIteration_
);
beta_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
betaStrides_
,
kGridSize_
,
numBlockTileIteration_
);
y_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
yStrides_
,
kGridSize_
,
numBlockTileIteration_
);
// We don't need to pad in K dimension for Welford1. Set KPerTile 1.
kernel1_mean_var_grid_desc_m_kblock_
=
MakeMeanVarDescriptor_M_K
<
Sequence
<
true
,
false
>
,
M_BlockTileSize
,
1
>
(
MRaw_
,
kGridSize_
);
kernel2_mean_var_grid_desc_m_kblock_
=
MakeMeanVarDescriptor_M_K
<
Sequence
<
true
,
true
>
,
M_BlockTileSize
,
K_MeanVarCountBlockTileSize
>
(
MRaw_
,
kGridSize_
);
kernel2_count_grid_desc_m_kblock_
=
MakeCountDescriptor_M_K
<
Sequence
<
true
,
true
>
,
M_BlockTileSize
,
K_MeanVarCountBlockTileSize
>
(
MRaw_
,
kGridSize_
);
}
ComputeDataType
epsilon_
;
const
XDataType
*
p_x_
;
const
GammaDataType
*
p_gamma_
;
const
BetaDataType
*
p_beta_
;
YDataType
*
p_y_
;
void
*
p_workspace_mean_
;
void
*
p_workspace_var_
;
void
*
p_workspace_count_
;
std
::
vector
<
index_t
>
Lengths_
;
std
::
vector
<
index_t
>
xStrides_
;
std
::
vector
<
index_t
>
gammaStrides_
;
std
::
vector
<
index_t
>
betaStrides_
;
std
::
vector
<
index_t
>
yStrides_
;
YElementwiseOperation
y_elementwise_op_
;
int
kGridSize_
;
int
numMeanVarCountIteration_
;
int
numBlockTileIteration_
;
size_t
gridSize_
;
SrcGridDesc_M_K
x_grid_desc_m_k_
;
SrcGridDesc_M_K
gamma_grid_desc_m_k_
;
SrcGridDesc_M_K
beta_grid_desc_m_k_
;
SrcGridDesc_M_K
y_grid_desc_m_k_
;
Kernel1MeanVarGridDesc_M_KBlock
kernel1_mean_var_grid_desc_m_kblock_
;
Kernel2MeanVarGridDesc_M_KBlock
kernel2_mean_var_grid_desc_m_kblock_
;
Kernel2CountGridDesc_M_KBlock
kernel2_count_grid_desc_m_kblock_
;
index_t
MRaw_
;
// invarient length
index_t
KRaw_
;
// reduce length
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
arg
.
p_workspace_mean_
==
nullptr
||
arg
.
p_workspace_var_
==
nullptr
||
arg
.
p_workspace_count_
==
nullptr
)
throw
std
::
runtime_error
(
"wrong! WorkSpace pointer has not been set"
);
auto
kernel1
=
kernel_normalizationSplitK1st
<
GridwiseWelford
,
XDataType
,
MeanVarDataType
,
ComputeDataType
,
SrcGridDesc_M_K
,
Kernel1MeanVarGridDesc_M_KBlock
>
;
auto
kernel2
=
kernel_normalizationSplitK2nd
<
GridwiseWelfordNormalization
,
MeanVarDataType
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
Kernel2MeanVarGridDesc_M_KBlock
,
Kernel2CountGridDesc_M_KBlock
,
SrcGridDesc_M_K
>
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel1
,
dim3
(
arg
.
gridSize_
),
dim3
(
BlockSize
),
0
,
arg
.
x_grid_desc_m_k_
,
arg
.
kernel1_mean_var_grid_desc_m_kblock_
,
arg
.
numBlockTileIteration_
,
arg
.
p_x_
,
static_cast
<
MeanVarDataType
*>
(
arg
.
p_workspace_mean_
),
static_cast
<
MeanVarDataType
*>
(
arg
.
p_workspace_var_
),
static_cast
<
int32_t
*>
(
arg
.
p_workspace_count_
));
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel2
,
dim3
(
arg
.
gridSize_
),
dim3
(
BlockSize
),
0
,
arg
.
kernel2_mean_var_grid_desc_m_kblock_
,
arg
.
kernel2_count_grid_desc_m_kblock_
,
arg
.
x_grid_desc_m_k_
,
arg
.
gamma_grid_desc_m_k_
,
arg
.
beta_grid_desc_m_k_
,
arg
.
y_grid_desc_m_k_
,
arg
.
numMeanVarCountIteration_
,
arg
.
numBlockTileIteration_
,
arg
.
kGridSize_
,
arg
.
epsilon_
,
static_cast
<
MeanVarDataType
*>
(
arg
.
p_workspace_mean_
),
static_cast
<
MeanVarDataType
*>
(
arg
.
p_workspace_var_
),
static_cast
<
int32_t
*>
(
arg
.
p_workspace_count_
),
arg
.
p_x_
,
arg
.
p_gamma_
,
arg
.
p_beta_
,
arg
.
p_y_
,
arg
.
y_elementwise_op_
);
return
avg_time
;
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
pArg
)
const
override
{
const
Argument
*
pArg_
=
dynamic_cast
<
const
Argument
*>
(
pArg
);
size_t
workspace_size
=
0
;
int
welford_size
=
pArg_
->
MRaw_
*
pArg_
->
kGridSize_
;
// workspace for welford intermediate mean
workspace_size
+=
welford_size
*
sizeof
(
MeanVarDataType
)
+
64
;
// workspace for welford intermediate variance
workspace_size
+=
welford_size
*
sizeof
(
MeanVarDataType
)
+
64
;
// workspace for welford intermediate count
workspace_size
+=
pArg_
->
kGridSize_
*
sizeof
(
int32_t
)
+
64
;
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
pArg_
->
p_workspace_
=
p_workspace
;
int
welford_size
=
pArg_
->
MRaw_
*
pArg_
->
kGridSize_
;
// setup buffer used for intermediate welford mean
pArg_
->
p_workspace_mean_
=
static_cast
<
char
*>
(
pArg_
->
p_workspace_
);
index_t
mean_space_sz
=
welford_size
*
sizeof
(
MeanVarDataType
);
mean_space_sz
=
math
::
integer_least_multiple
(
mean_space_sz
,
64
);
// setup buffer used for intermediate welford varirance
pArg_
->
p_workspace_var_
=
reinterpret_cast
<
char
*>
(
pArg_
->
p_workspace_mean_
)
+
mean_space_sz
;
index_t
variance_space_sz
=
welford_size
*
sizeof
(
MeanVarDataType
);
variance_space_sz
=
math
::
integer_least_multiple
(
variance_space_sz
,
64
);
// setup buffer used for intermediate welford count
pArg_
->
p_workspace_count_
=
reinterpret_cast
<
char
*>
(
pArg_
->
p_workspace_var_
)
+
variance_space_sz
;
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
if
constexpr
(
XYVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
false
;
}
else
{
if
(
p_arg_
->
xStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
invariant_lowest_length
%
XSrcVectorSize
!=
0
)
return
false
;
if
(
p_arg_
->
invariant_lowest_length
%
YDstVectorSize
!=
0
)
return
false
;
};
}
else
{
if
(
p_arg_
->
xStrides_
[
Rank
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
XSrcVectorSize
!=
0
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
YDstVectorSize
!=
0
)
return
false
;
};
// if fastest dim is not reduced
if
constexpr
(
GammaSrcVectorDim
==
0
)
{
if
(
p_arg_
->
gammaStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
GammaSrcVectorSize
!=
0
)
return
false
;
}
else
// if fastest dim is reduced
{
if
(
p_arg_
->
gammaStrides_
[
Rank
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
GammaSrcVectorSize
!=
0
)
return
false
;
}
// if fastest dim is not reduced
if
constexpr
(
BetaSrcVectorDim
==
0
)
{
if
(
p_arg_
->
betaStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
invariant_lowest_length
%
BetaSrcVectorSize
!=
0
)
return
false
;
}
else
// if fastest dim is reduced
{
if
(
p_arg_
->
betaStrides_
[
Rank
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
BetaSrcVectorSize
!=
0
)
return
false
;
}
if
(
p_arg_
->
kGridSize_
<=
1
)
return
false
;
return
true
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
double
epsilon
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_y
,
void
*
p_saveMean
,
void
*
p_saveInvVar
,
YElementwiseOperation
y_elementwise_op
)
override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore
=
p_saveMean
;
ignore
=
p_saveInvVar
;
return
std
::
make_unique
<
Argument
>
(
lengths
,
xStrides
,
gammaStrides
,
betaStrides
,
yStrides
,
reduceDims
,
y_elementwise_op
,
epsilon
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
GammaDataType
*>
(
p_gamma
),
static_cast
<
const
BetaDataType
*>
(
p_beta
),
static_cast
<
YDataType
*>
(
p_y
));
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceNormalizationSplitKImpl<"
<<
BlockSize
<<
","
;
str
<<
"Cluster_MK_"
<<
MThreadClusterSize
<<
"_"
<<
KThreadClusterSize
<<
","
;
str
<<
"Slice_MK_"
<<
MThreadSliceSize
<<
"_"
<<
KThreadSliceSize
<<
","
;
str
<<
"XYSrcVectorDim_"
<<
XYVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_Gamma"
<<
GammaSrcVectorSize
<<
"_Beta"
<<
BetaSrcVectorSize
<<
"_Y"
<<
YDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
e2878e25
...
...
@@ -56,6 +56,12 @@ struct PassThrough
y
=
type_convert
<
bhalf_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
bhalf_t
,
half_t
>
(
bhalf_t
&
y
,
const
half_t
&
x
)
const
{
y
=
type_convert
<
bhalf_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
...
...
@@ -86,6 +92,23 @@ struct UnaryConvert
}
};
struct
ConvertBF16RTN
{
// convert to bf16 using round to nearest (rtn)
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
{
// check Y datatype
static_assert
(
is_same
<
Y
,
bhalf_t
>::
value
,
"Data type is not supported by this operation!"
);
// check X datatype
static_assert
(
is_same
<
X
,
float
>::
value
||
is_same
<
X
,
half_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
bf16_convert_rtn
<
Y
>
(
x
);
}
};
struct
Scale
{
__host__
__device__
Scale
(
float
scale
)
:
scale_
(
scale
)
{}
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
e2878e25
...
...
@@ -587,4 +587,52 @@ struct OffsettedBlockToCTileMap
index_t
block_start_
;
};
/**
* @brief Simple tile mapping which creates 3D grid of block of threads.
*
* @paragraph Description
* This Block-to-C-tile-map creates a 3D grid (n_blocks, m_blocks, z_blocks) of thread
* blocks. The first 2D are regular 2D tiles created by division of output GEMM
* dimenions by corresponding tile size. The third dimension (Z) is a k-split dimension,
* which denotes the number of blocks we use to divide work on GEMM K dimension onto.
*
* @tparam MPerBlock Output block tile size in M dimension.
* @tparam NPerBlock Output block tile size in N dimension.
*/
template
<
index_t
MPerBlock
,
index_t
NPerBlock
>
struct
BlockToCTileMap_3DGrid_KSplit
{
__host__
__device__
BlockToCTileMap_3DGrid_KSplit
()
=
default
;
__host__
__device__
constexpr
auto
CalculateGridSize
(
index_t
M
,
index_t
N
,
index_t
k_split
)
const
{
// Create 3D grid
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
std
::
make_tuple
(
N0
,
M0
,
k_split
);
}
template
<
typename
TopIdx
>
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
)
const
{
return
make_tuple
(
blockIdx
.
z
,
blockIdx
.
y
,
blockIdx
.
x
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
};
}
// namespace ck
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment