Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e1a5137e
Unverified
Commit
e1a5137e
authored
Sep 19, 2023
by
arai713
Committed by
GitHub
Sep 19, 2023
Browse files
Merge branch 'develop' into transpose_5d
parents
eb57178d
718065eb
Changes
371
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
918 additions
and
60 deletions
+918
-60
profiler/src/profile_gemm_bilinear.cpp
profiler/src/profile_gemm_bilinear.cpp
+19
-0
profiler/src/profile_gemm_multiply_add.cpp
profiler/src/profile_gemm_multiply_add.cpp
+157
-0
profiler/src/profile_gemm_splitk.cpp
profiler/src/profile_gemm_splitk.cpp
+40
-1
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+1
-1
profiler/src/profile_image_to_column.cpp
profiler/src/profile_image_to_column.cpp
+169
-0
profiler/src/profile_max_pool3d_bwd.cpp
profiler/src/profile_max_pool3d_bwd.cpp
+177
-0
profiler/src/profile_max_pool3d_fwd.cpp
profiler/src/profile_max_pool3d_fwd.cpp
+60
-4
script/clang-format-overwrite.sh
script/clang-format-overwrite.sh
+2
-2
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+0
-1
script/install_precommit.sh
script/install_precommit.sh
+1
-1
test/CMakeLists.txt
test/CMakeLists.txt
+2
-1
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
+1
-1
test/contraction/test_contraction_interface.cpp
test/contraction/test_contraction_interface.cpp
+1
-1
test/data_type/CMakeLists.txt
test/data_type/CMakeLists.txt
+9
-2
test/data_type/bf8.cpp
test/data_type/bf8.cpp
+158
-0
test/data_type/f8.cpp
test/data_type/f8.cpp
+57
-24
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
.../grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
+9
-0
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
...uped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
+52
-18
test/grouped_gemm/test_grouped_gemm_interface.cpp
test/grouped_gemm/test_grouped_gemm_interface.cpp
+1
-1
test/grouped_gemm/test_grouped_gemm_util.hpp
test/grouped_gemm/test_grouped_gemm_util.hpp
+2
-2
No files found.
profiler/src/profile_gemm_bilinear.cpp
View file @
e1a5137e
...
...
@@ -71,6 +71,9 @@ int profile_gemm_bilinear(int argc, char* argv[])
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I8
=
std
::
int8_t
;
using
I32
=
std
::
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -141,6 +144,22 @@ int profile_gemm_bilinear(int argc, char* argv[])
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Row
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Col
{},
Col
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_gemm_multiply_add.cpp
0 → 100644
View file @
e1a5137e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_multiply_add_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_multiply_add"
#define OP_DESC "GEMM+MULTIPLY+ADD"
int
profile_gemm_multiply_add
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN_MN
,
// 0
MK_NK_MN_MN_MN
,
// 1
};
enum
struct
MatrixDataType
{
F16_F16_F16_F16_F16
,
// 0
F16_F8_F32_F32_F16
,
// 1
};
if
(
argc
!=
16
)
{
// clang-format off
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp16; 1: fp16Afp8B)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = Multiply_Add((A[m, k] * B[k, n]) x D1[m, n] + D0[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = Multiply_Add((A[m, k] * B[n, k]) x D1[m, n] + D0[m, n]);
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideD1
=
std
::
stoi
(
argv
[
14
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
15
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
#if defined CK_ENABLE_FP8
using
F8
=
ck
::
f8_t
;
#endif
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d0_type
,
auto
d1_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
d1_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
D1DataType
=
decltype
(
d1_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
D1Layout
=
decltype
(
d1_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideD1
=
ck
::
is_same_v
<
D1Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_multiply_add_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
#if defined CK_ENABLE_FP8
else
if
(
data_type
==
MatrixDataType
::
F16_F8_F32_F32_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F32
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F8_F32_F32_F16
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F32
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
#endif
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_multiply_add
);
profiler/src/profile_gemm_splitk.cpp
View file @
e1a5137e
...
...
@@ -23,6 +23,8 @@ enum struct GemmDataType
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
};
#define OP_NAME "gemm_splitk"
...
...
@@ -33,7 +35,7 @@ int profile_gemm_splitk(int argc, char* argv[])
if
(
argc
!=
15
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8
; 4: f8@f16; 5: f16@f8
)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
...
...
@@ -65,6 +67,9 @@ int profile_gemm_splitk(int argc, char* argv[])
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
#if defined CK_ENABLE_FP8
using
F8
=
ck
::
f8_t
;
#endif
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -143,6 +148,40 @@ int profile_gemm_splitk(int argc, char* argv[])
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
#if defined CK_ENABLE_FP8
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
#endif
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_grouped_gemm.cpp
View file @
e1a5137e
...
...
@@ -88,7 +88,7 @@ int profile_grouped_gemm(int argc, char* argv[])
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
#ifdef
__fp16__
#ifdef
CK_ENABLE_FP16
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_impl
<
ck
::
half_t
,
...
...
profiler/src/profile_image_to_column.cpp
0 → 100644
View file @
e1a5137e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_image_to_column_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
ConvLayout
{
NHWC
,
// 0
};
enum
struct
DataType
{
F32_F32
,
// 0
F16_F16
,
// 1
BF16_BF16
,
// 2
INT8_INT8
,
// 3
};
#define OP_NAME "image_to_column"
#define OP_DESC "Image To Column"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Input fp32, Weight fp32, Output fp32
\n
"
<<
" 1: Input fp16, Weight fp16, Output fp16
\n
"
<<
" 2: Input bf16, Weight bf16, Output bf16
\n
"
<<
" 3: Input int8, Weight int8, Output int8)
\n
"
<<
"arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_image_to_column
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
DataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
int8_t
;
using
namespace
ck
::
tensor_layout
::
convolution
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
in_layout
,
auto
in_type
,
auto
out_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
InDataType
=
decltype
(
in_type
);
using
OutDataType
=
decltype
(
out_type
);
bool
pass
=
ck
::
profiler
::
profile_image_to_column_impl
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
// NHWC
if
(
layout
==
ConvLayout
::
NHWC
)
{
if
(
num_dim_spatial
==
1
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I1
,
GNWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I1
,
GNWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I1
,
GNWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I1
,
GNWC
{},
INT8
{},
INT8
{});
}
}
else
if
(
num_dim_spatial
==
2
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I2
,
GNHWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I2
,
GNHWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I2
,
GNHWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I2
,
GNHWC
{},
INT8
{},
INT8
{});
}
}
else
if
(
num_dim_spatial
==
3
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I3
,
GNDHWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I3
,
GNDHWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I3
,
GNDHWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I3
,
GNDHWC
{},
INT8
{},
INT8
{});
}
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_image_to_column
);
profiler/src/profile_max_pool3d_bwd.cpp
0 → 100644
View file @
e1a5137e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_max_pool3d_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "profiler_operation_registry.hpp"
using
ck
::
index_t
;
struct
maxPoolbwdArgParser
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{{
"length"
,
{}},
{
"wsize"
,
{}},
{
"wstride"
,
{}},
{
"wdilation"
,
{}},
{
"pad1"
,
{}},
{
"pad2"
,
{}}};
bool
parse_opt
(
int
argc
,
char
*
argv
[],
const
std
::
string
&
key
,
int
i
)
{
if
(
std
::
string
(
"--"
)
+
key
==
argv
[
i
])
{
int
pos
=
i
;
while
(
++
i
<
argc
&&
argv
[
i
][
0
]
!=
'-'
)
{}
int
end
=
i
;
for
(
int
j
=
pos
+
1
;
j
<
end
;
j
++
)
{
long_opts
[
key
].
push_back
(
std
::
stoi
(
argv
[
j
]));
}
return
true
;
}
return
false
;
}
void
operator
()(
int
argc
,
char
*
argv
[])
{
for
(
auto
&
kv
:
long_opts
)
{
for
(
int
i
=
1
;
i
<
argc
;
i
++
)
{
if
(
parse_opt
(
argc
,
argv
,
kv
.
first
,
i
))
break
;
}
}
}
};
void
print_help_max_pool3d_bwd
()
{
std
::
cout
<<
"arg1: data type (0: fp16; 1: fp32; 5: bf16)
\n
"
<<
"arg2: verification (0: no; 1: yes)
\n
"
<<
"arg3: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
<<
"arg5: time kernel (0=no, 1=yes)
\n
"
<<
"--length: input tensor length for NCDHW(e.g, --length 2 32 30 30 30)
\n
"
<<
"--wsize: window size for ZYX (e.g, --wsize 2 2 2)
\n
"
<<
"--wstride: window stride for DHW (e.g, --wstride 2 2 2)
\n
"
<<
"--wdilation: window dilation for DHW (e.g, --wdilation 1 1 1)
\n
"
<<
"--pad1: left side of padding in DHW (e.g, --pad1 1 1 1)
\n
"
<<
"--pad2: right side of padding in DHW (e.g, --pad2 1 1 1)
\n
"
<<
"eg: ckProfiler max_pool3d_bwd 0 1 2 0 1 --length 2 32 30 30 30 --wsize 2 2 2 "
"--wstride 2 2 2 --wdilation 1 1 1 --pad1 1 1 1 --pad2 1 1 1"
<<
std
::
endl
;
}
int
profile_max_pool3d_bwd
(
int
argc
,
char
*
argv
[])
{
ck
::
DataTypeEnum
data_type
=
ck
::
DataTypeEnum
::
Half
;
bool
do_verification
=
true
;
int
init_method
=
0
;
bool
do_log
=
false
;
bool
time_kernel
=
true
;
std
::
vector
<
index_t
>
in_length
=
{
2
,
32
,
30
,
30
,
30
};
std
::
vector
<
index_t
>
wsize
=
{
2
,
2
,
2
};
std
::
vector
<
index_t
>
wstride
=
{
2
,
2
,
2
};
std
::
vector
<
index_t
>
wdilation
=
{
1
,
1
,
1
};
std
::
vector
<
index_t
>
pad1
=
{
1
,
1
,
1
};
std
::
vector
<
index_t
>
pad2
=
{
1
,
1
,
1
};
if
(
argc
!=
2
&&
argc
!=
33
)
{
print_help_max_pool3d_bwd
();
return
0
;
}
else
if
(
argc
==
33
)
{
data_type
=
static_cast
<
ck
::
DataTypeEnum
>
(
std
::
stoi
(
argv
[
2
]));
do_verification
=
std
::
stoi
(
argv
[
3
]);
init_method
=
std
::
stoi
(
argv
[
4
]);
do_log
=
std
::
stoi
(
argv
[
5
]);
time_kernel
=
std
::
stoi
(
argv
[
6
]);
// parse the long options
maxPoolbwdArgParser
arg_parser
;
arg_parser
(
argc
,
argv
);
in_length
=
arg_parser
.
long_opts
[
"length"
];
wsize
=
arg_parser
.
long_opts
[
"wsize"
];
wstride
=
arg_parser
.
long_opts
[
"wstride"
];
wdilation
=
arg_parser
.
long_opts
[
"wdilation"
];
pad1
=
arg_parser
.
long_opts
[
"pad1"
];
pad2
=
arg_parser
.
long_opts
[
"pad2"
];
}
#ifdef CK_ENABLE_FP16
using
F16
=
ck
::
half_t
;
#endif
#ifdef CK_ENABLE_BF16
using
BF16
=
ck
::
bhalf_t
;
#endif
#ifdef CK_ENABLE_FP32
using
F32
=
float
;
#endif
using
I32
=
int32_t
;
if
(
false
)
;
#ifdef CK_ENABLE_FP16
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
ck
::
profiler
::
profile_max_pool3d_bwd_impl
<
F16
,
F16
,
I32
,
F16
,
F16
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
wdilation
,
pad1
,
pad2
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
(
data_type
==
ck
::
DataTypeEnum
::
BFloat16
)
{
ck
::
profiler
::
profile_max_pool3d_bwd_impl
<
BF16
,
BF16
,
I32
,
BF16
,
BF16
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
wdilation
,
pad1
,
pad2
);
}
#endif
#ifdef CK_ENABLE_FP32
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
ck
::
profiler
::
profile_max_pool3d_bwd_impl
<
F32
,
F32
,
I32
,
F32
,
F32
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
wdilation
,
pad1
,
pad2
);
}
#endif
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
}
return
0
;
}
REGISTER_PROFILER_OPERATION
(
"max_pool3d_bwd"
,
"max_pool3d bwd"
,
profile_max_pool3d_bwd
);
profiler/src/profile_max_pool3d_fwd.cpp
View file @
e1a5137e
...
...
@@ -51,7 +51,7 @@ struct maxPoolFwdArgParser
void
print_help_max_pool3d_fwd
()
{
std
::
cout
<<
"arg1: data type (0: fp16; 1: fp32)
\n
"
std
::
cout
<<
"arg1: data type (0: fp16; 1: fp32
; 5: bf16
)
\n
"
<<
"arg2: verification (0: no; 1: yes)
\n
"
<<
"arg3: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
...
...
@@ -109,8 +109,15 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad2
=
arg_parser
.
long_opts
[
"pad2"
];
}
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
#ifdef CK_ENABLE_FP16
using
F16
=
ck
::
half_t
;
#endif
#ifdef CK_ENABLE_BF16
using
BF16
=
ck
::
bhalf_t
;
#endif
#ifdef CK_ENABLE_FP32
using
F32
=
float
;
#endif
using
I32
=
int32_t
;
using
NDHWC
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
...
...
@@ -120,7 +127,10 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
if
(
false
)
;
#ifdef CK_ENABLE_FP16
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
if
(
return_index
)
ck
::
profiler
::
...
...
@@ -149,6 +159,51 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad1
,
pad2
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
(
data_type
==
ck
::
DataTypeEnum
::
BFloat16
)
{
if
(
return_index
)
ck
::
profiler
::
profile_pool3d_fwd_impl
<
BF16
,
BF16
,
BF16
,
I32
,
NDHWC
,
NDHWC
,
ReduceOpId
,
false
,
true
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
wdilation
,
pad1
,
pad2
);
else
ck
::
profiler
::
profile_pool3d_fwd_impl
<
BF16
,
BF16
,
BF16
,
I32
,
NDHWC
,
NDHWC
,
ReduceOpId
,
false
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
wdilation
,
pad1
,
pad2
);
}
#endif
#ifdef CK_ENABLE_FP32
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
if
(
return_index
)
...
...
@@ -178,6 +233,7 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad1
,
pad2
);
}
#endif
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
...
...
script/clang-format-overwrite.sh
View file @
e1a5137e
#find . -name deps -prune -o -name build -prune -o -iname '*.h' -o -iname '*.hpp' -o -iname '*.cpp' -o -iname '*.h.in' -o -iname '*.hpp.in' -o -iname '*.cpp.in' -o -iname '*.cl' -o -iname '*.cuh' -o -iname '*.cu' -o -iname '*.inc' | xargs -n 1 -P 16 -I{} -t sh -c 'clang-format-1
0
-i -style=file {}'
git status
--porcelain
|
awk
'$1 != "D" && (match($2, "\\.cpp|hpp|inc")) {print $2}'
| xargs
-n
1
-P
16
-I
{}
-t
sh
-c
'clang-format-1
0
-i -style=file {}'
#find . -name deps -prune -o -name build -prune -o -iname '*.h' -o -iname '*.hpp' -o -iname '*.cpp' -o -iname '*.h.in' -o -iname '*.hpp.in' -o -iname '*.cpp.in' -o -iname '*.cl' -o -iname '*.cuh' -o -iname '*.cu' -o -iname '*.inc' | xargs -n 1 -P 16 -I{} -t sh -c 'clang-format-1
2
-i -style=file {}'
git status
--porcelain
|
awk
'$1 != "D" && (match($2, "\\.cpp|hpp|inc")) {print $2}'
| xargs
-n
1
-P
16
-I
{}
-t
sh
-c
'clang-format-1
2
-i -style=file {}'
script/cmake-ck-dev.sh
View file @
e1a5137e
...
...
@@ -16,4 +16,3 @@ cmake
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
${
MY_PROJECT_SOURCE
}
script/install_precommit.sh
View file @
e1a5137e
...
...
@@ -11,7 +11,7 @@ run_and_check() {
}
echo
"I: Installing tools required for pre-commit checks..."
run_and_check apt
install
clang-format-1
0
run_and_check apt
install
clang-format-1
2
echo
"I: Installing pre-commit itself..."
run_and_check pip3
install
pre-commit
...
...
test/CMakeLists.txt
View file @
e1a5137e
...
...
@@ -57,9 +57,10 @@ add_subdirectory(data_type)
add_subdirectory
(
elementwise_normalization
)
add_subdirectory
(
batchnorm
)
add_subdirectory
(
contraction
)
add_subdirectory
(
pool
_fwd
)
add_subdirectory
(
pool
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
add_subdirectory
(
image_to_column
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
endif
()
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
View file @
e1a5137e
...
...
@@ -71,6 +71,6 @@ TYPED_TEST_SUITE(TestBatchedGemmMultiD, KernelTypes);
#ifdef __fp16
TYPED_TEST
(
TestBatchedGemmMultiD
,
f16
)
{
this
->
template
Run
<
F16
>();
}
#endif
#ifdef
__int8__
#ifdef
CK_ENABLE_INT8
TYPED_TEST
(
TestBatchedGemmMultiD
,
int8
)
{
this
->
template
Run
<
int8_t
>();
}
#endif
test/contraction/test_contraction_interface.cpp
View file @
e1a5137e
...
...
@@ -38,7 +38,7 @@ class ContractionInstanceWrapper
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
>
;
// clang-format on
bool
isSupported
(
std
::
vector
<
ck
::
index_t
>&
ADims
,
...
...
test/data_type/CMakeLists.txt
View file @
e1a5137e
...
...
@@ -3,5 +3,12 @@ if (USE_BITINT_EXTENSION_INT4)
target_link_libraries
(
test_int4 PRIVATE utility
)
endif
()
add_gtest_executable
(
test_fp8 fp8.cpp
)
target_link_libraries
(
test_fp8 PRIVATE utility
)
if
(
DTYPES MATCHES
"fp8"
OR NOT DEFINED DTYPES
)
add_gtest_executable
(
test_f8 f8.cpp
)
target_link_libraries
(
test_f8 PRIVATE utility
)
endif
()
if
(
DTYPES MATCHES
"bf8"
OR NOT DEFINED DTYPES
)
add_gtest_executable
(
test_bf8 bf8.cpp
)
target_link_libraries
(
test_bf8 PRIVATE utility
)
endif
()
test/data_type/bf8.cpp
0 → 100644
View file @
e1a5137e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using
ck
::
bf8_t
;
using
ck
::
f8_convert_sr
;
using
ck
::
half_t
;
using
ck
::
type_convert
;
TEST
(
BF8
,
NumericLimits
)
{
// constants given for negative zero nan mode
EXPECT_EQ
(
ck
::
NumericLimits
<
bf8_t
>::
Min
(),
type_convert
<
bf8_t
>
(
0x04
));
EXPECT_EQ
(
ck
::
NumericLimits
<
bf8_t
>::
Max
(),
type_convert
<
bf8_t
>
(
0x7F
));
EXPECT_EQ
(
ck
::
NumericLimits
<
bf8_t
>::
Lowest
(),
type_convert
<
bf8_t
>
(
0xFF
));
EXPECT_EQ
(
ck
::
NumericLimits
<
bf8_t
>::
QuietNaN
(),
type_convert
<
bf8_t
>
(
0x80
));
}
TEST
(
BF8
,
ConvertFP32Nearest
)
{
// fix the tolerance value
float
abs_tol
=
1e-6
;
// convert 0 float to bf8 and back, check if holds
ASSERT_NEAR
(
0.0
f
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
0.0
f
)),
abs_tol
);
// convert minimal float to bf8 and back, check if holds
ASSERT_NEAR
(
std
::
numeric_limits
<
float
>::
min
(),
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
min
())),
abs_tol
);
// convert maximal bf8_t to float and check if equal to 57344.0
ASSERT_NEAR
(
57344.0
f
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
57344.0
f
)),
abs_tol
);
// convert maximal float to bf8 and back, check if clipped to 57344.0
ASSERT_NEAR
(
57344.0
f
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to bf8_t and check if it is qNan
ASSERT_NEAR
(
type_convert
<
bf8_t
>
(
0x80
),
type_convert
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive norm float value to bf8 and back, check if holds
float
pos_float
=
0.0000762939
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
pos_float
)),
abs_tol
);
// negative norm float value to bf8 and back, check if holds
float
neg_float
=
-
0.0000610351
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
neg_float
)),
abs_tol
);
// positive subnorm float value to bf8 and back, check if holds
pos_float
=
0.0000305175
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
pos_float
)),
abs_tol
);
// negative subnorm float value to bf8 and back, check if holds
neg_float
=
-
0.0000152587
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
type_convert
<
bf8_t
>
(
neg_float
)),
abs_tol
);
}
TEST
(
BF8
,
ConvertFP32Stochastic
)
{
// fix the tolerance value
float
abs_tol
=
1e-6
;
// convert 0 float to bf8 and back, check if holds
ASSERT_NEAR
(
0.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
0.0
f
)),
abs_tol
);
// convert minimal float to bf8 and back, check if holds
ASSERT_NEAR
(
std
::
numeric_limits
<
float
>::
min
(),
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
min
())),
abs_tol
);
// convert maximal bf8_t to float and check if equal to 57344.0
ASSERT_NEAR
(
57344.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
57344.0
f
)),
abs_tol
);
// convert maximal float to bf8 and back, check if clipped to 57344.0
ASSERT_NEAR
(
57344.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to bf8_t and check if it is qNan
ASSERT_NEAR
(
type_convert
<
bf8_t
>
(
0x80
),
f8_convert_sr
<
bf8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive norm float value to bf8 and back, check if holds
float
pos_float
=
0.0000762939
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
pos_float
)),
abs_tol
);
// negative norm float value to bf8 and back, check if holds
float
neg_float
=
-
0.0000610351
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
neg_float
)),
abs_tol
);
// positive subnorm float value to bf8 and back, check if holds
pos_float
=
0.0000305175
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
pos_float
)),
abs_tol
);
// negative subnorm float value to bf8 and back, check if holds
neg_float
=
-
0.0000152587
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
f8_convert_sr
<
bf8_t
>
(
neg_float
)),
abs_tol
);
}
TEST
(
BF8
,
ConvertFP16Nearest
)
{
// fix the tolerance value
float
abs_tol
=
1e-3
;
// convert 0 fp16 to bf8 and back, check if holds
ASSERT_NEAR
(
half_t
{
0.0
},
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
half_t
{
0.0
})),
abs_tol
);
// convert minimal fp16 to bf8 and back, check if holds
ASSERT_NEAR
(
ck
::
NumericLimits
<
half_t
>::
Min
(),
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Min
())),
abs_tol
);
// convert maximal bf8_t to fp16 and check if equal to 57344.0
ASSERT_NEAR
(
half_t
{
57344.0
},
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
half_t
{
57344.0
})),
abs_tol
);
// convert maximal fp16 to bf8 and back, check if clipped to 57344.0
ASSERT_NEAR
(
half_t
{
57344.0
},
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to bf8_t and check if it is QuietNaN
ASSERT_NEAR
(
type_convert
<
bf8_t
>
(
0x80
),
type_convert
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive norm fp16 value to bf8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0000762939
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
pos_half
)),
abs_tol
);
// negative norm fp16 value to bf8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0000610351
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
neg_half
)),
abs_tol
);
// positive subnorm fp16 value to bf8 and back, check if holds
pos_half
=
half_t
{
0.0000305175
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
pos_half
)),
abs_tol
);
// negative subnorm fp16 value to bf8 and back, check if holds
neg_half
=
half_t
{
-
0.0000152587
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
type_convert
<
bf8_t
>
(
neg_half
)),
abs_tol
);
}
TEST
(
BF8
,
ConvertFP16Stochastic
)
{
// fix the tolerance value
float
abs_tol
=
1e-3
;
// convert 0 fp16 to bf8 and back, check if holds
ASSERT_NEAR
(
half_t
{
0.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
half_t
{
0.0
})),
abs_tol
);
// convert minimal fp16 to bf8 and back, check if holds
ASSERT_NEAR
(
ck
::
NumericLimits
<
half_t
>::
Min
(),
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Min
())),
abs_tol
);
// convert maximal bf8_t to fp16 and check if equal to 57344.0
ASSERT_NEAR
(
half_t
{
57344.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
half_t
{
57344.0
})),
abs_tol
);
// convert maximal fp16 to bf8 and back, check if clipped to 57344.0
ASSERT_NEAR
(
half_t
{
57344.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to bf8_t and check if it is QuietNaN
ASSERT_NEAR
(
type_convert
<
bf8_t
>
(
0x80
),
f8_convert_sr
<
bf8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive norm fp16 value to bf8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0000762939
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
pos_half
)),
abs_tol
);
// negative norm fp16 value to bf8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0000610351
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
neg_half
)),
abs_tol
);
// positive subnorm fp16 value to bf8 and back, check if holds
pos_half
=
half_t
{
0.0000305175
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
pos_half
)),
abs_tol
);
// negative subnorm fp16 value to bf8 and back, check if holds
neg_half
=
half_t
{
-
0.0000152587
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
bf8_t
>
(
neg_half
)),
abs_tol
);
}
test/data_type/f
p
8.cpp
→
test/data_type/f8.cpp
View file @
e1a5137e
...
...
@@ -12,10 +12,11 @@ using ck::type_convert;
TEST
(
FP8
,
NumericLimits
)
{
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Min
(),
0x08
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Max
(),
0x77
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Lowest
(),
0xF7
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
QuietNaN
(),
0x80
);
// constants given for negative zero nan mode
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Min
(),
type_convert
<
f8_t
>
(
0x08
));
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Max
(),
type_convert
<
f8_t
>
(
0x7F
));
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Lowest
(),
type_convert
<
f8_t
>
(
0xFF
));
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
QuietNaN
(),
type_convert
<
f8_t
>
(
0x80
));
}
TEST
(
FP8
,
ConvertFP32Nearest
)
...
...
@@ -35,12 +36,20 @@ TEST(FP8, ConvertFP32Nearest)
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR
(
0x80
,
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive float value to fp8 and back, check if holds
float
pos_float
=
0.0078125
f
;
ASSERT_NEAR
(
type_convert
<
f8_t
>
(
0x80
),
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive norm float value to fp8 and back, check if holds
float
pos_float
=
0.017578125
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative norm float value to fp8 and back, check if holds
float
neg_float
=
-
0.015625
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
neg_float
)),
abs_tol
);
// positive subnorm float value to fp8 and back, check if holds
pos_float
=
0.00390625
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative float value to fp8 and back, check if holds
float
neg_float
=
-
0.0
156
25
0
f
;
// negative
subnorm
float value to fp8 and back, check if holds
neg_float
=
-
0.0
019531
25
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
neg_float
)),
abs_tol
);
}
...
...
@@ -61,12 +70,20 @@ TEST(FP8, ConvertFP32Stochastic)
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR
(
0x80
,
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive float value to fp8 and back, check if holds
float
pos_float
=
0.0078125
f
;
ASSERT_NEAR
(
type_convert
<
f8_t
>
(
0x80
),
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive norm float value to fp8 and back, check if holds
float
pos_float
=
0.017578125
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative norm float value to fp8 and back, check if holds
float
neg_float
=
-
0.015625
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
neg_float
)),
abs_tol
);
// positive subnorm float value to fp8 and back, check if holds
pos_float
=
0.00390625
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative float value to fp8 and back, check if holds
float
neg_float
=
-
0.0
156
25
0
f
;
// negative
subnorm
float value to fp8 and back, check if holds
neg_float
=
-
0.0
019531
25
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
neg_float
)),
abs_tol
);
}
...
...
@@ -87,12 +104,20 @@ TEST(FP8, ConvertFP16Nearest)
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR
(
0x80
,
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0078125
};
ASSERT_NEAR
(
type_convert
<
f8_t
>
(
0x80
),
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive norm fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.017578125
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative norm fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.015625
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
neg_half
)),
abs_tol
);
// positive subnorm fp16 value to fp8 and back, check if holds
pos_half
=
half_t
{
0.00390625
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0
156
25
0
};
// negative
subnorm
fp16 value to fp8 and back, check if holds
neg_half
=
half_t
{
-
0.0
019531
25
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
neg_half
)),
abs_tol
);
}
...
...
@@ -113,11 +138,19 @@ TEST(FP8, ConvertFP16Stochastic)
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR
(
0x80
,
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0078125
};
ASSERT_NEAR
(
type_convert
<
f8_t
>
(
0x80
),
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive norm fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.017578125
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative norm fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.015625
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
neg_half
)),
abs_tol
);
// positive subnorm fp16 value to fp8 and back, check if holds
pos_half
=
half_t
{
0.00390625
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0
156
25
0
};
// negative
subnorm
fp16 value to fp8 and back, check if holds
neg_half
=
half_t
{
-
0.0
019531
25
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
neg_half
)),
abs_tol
);
}
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
View file @
e1a5137e
...
...
@@ -87,6 +87,9 @@ TYPED_TEST(TestGroupedConvndBwdData2d, Test2D)
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
({
2
,
1
,
1
,
1
,
32
,
{
8
,
8
},
{
32
,
32
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
({
2
,
1
,
1
,
64
,
3
,
{
8
,
8
},
{
32
,
32
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
({
2
,
1
,
1
,
1
,
1
,
{
8
,
8
},
{
32
,
32
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
template
Run
<
2
>();
}
...
...
@@ -99,5 +102,11 @@ TYPED_TEST(TestGroupedConvndBwdData3d, Test3D)
{
3
,
2
,
2
,
128
,
256
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
2
,
32
,
128
,
256
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
1
,
1
,
32
,
{
3
,
3
,
3
},
{
32
,
32
,
32
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
1
,
64
,
3
,
{
3
,
3
,
3
},
{
32
,
32
,
32
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
1
,
1
,
1
,
{
3
,
3
,
3
},
{
32
,
32
,
32
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
template
Run
<
3
>();
}
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
View file @
e1a5137e
...
...
@@ -14,6 +14,8 @@
#include "profiler/profile_grouped_conv_bwd_weight_impl.hpp"
using
namespace
ck
::
tensor_layout
::
convolution
;
template
<
typename
Tuple
>
class
TestGroupedConvndBwdWeight
:
public
::
testing
::
Test
{
...
...
@@ -27,28 +29,59 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
using
NDimSpatial
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
ck
::
index_t
split_k
{
2
};
std
::
vector
<
ck
::
index_t
>
split_ks
{
1
,
2
};
bool
skip_case
(
const
ck
::
utils
::
conv
::
ConvParam
&
params
,
const
ck
::
index_t
split_k
)
{
// Odd K or C values are supported only by DL kernel (only applies to fp16)
// DL kernel currently supports only `split_k=1`
if
constexpr
(
std
::
is_same_v
<
InDataType
,
ck
::
half_t
>
)
{
if
(
split_k
!=
1
&&
(
params
.
K_
%
2
!=
0
||
params
.
C_
%
2
!=
0
))
{
return
true
;
}
}
// 1d NWGC is only supported by DL kernel
// DL kernel is only supported for split_k=1
if
constexpr
(
std
::
is_same_v
<
InLayout
,
NWGC
>
&&
std
::
is_same_v
<
OutLayout
,
NWGK
>
)
{
if
(
split_k
!=
1
)
{
return
true
;
}
}
return
false
;
}
void
Run
()
{
EXPECT_FALSE
(
conv_params
.
empty
());
bool
pass
=
true
;
for
(
auto
&
param
:
conv_param
s
)
for
(
auto
split_k
:
split_k
s
)
{
pass
=
pass
&&
ck
::
profiler
::
profile_grouped_conv_bwd_weight_impl
<
NDimSpatial
{},
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
,
split_k
);
for
(
auto
&
param
:
conv_params
)
{
if
(
!
skip_case
(
param
,
split_k
))
{
pass
=
pass
&&
ck
::
profiler
::
profile_grouped_conv_bwd_weight_impl
<
NDimSpatial
{},
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
,
split_k
);
}
}
}
EXPECT_TRUE
(
pass
);
}
...
...
@@ -69,12 +102,13 @@ class TestGroupedConvndBwdWeight3d : public TestGroupedConvndBwdWeight<Tuple>
{
};
using
namespace
ck
::
tensor_layout
::
convolution
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
float
,
GNWC
,
GKXC
,
GNWK
,
ck
::
Number
<
1
>>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
Number
<
1
>>
,
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
Number
<
1
>>>
;
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
GNWC
,
GKXC
,
GNWK
,
ck
::
Number
<
1
>>
,
std
::
tuple
<
float
,
float
,
float
,
NWGC
,
GKXC
,
NWGK
,
ck
::
Number
<
1
>>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
NWGC
,
GKXC
,
NWGK
,
ck
::
Number
<
1
>>
,
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
NWGC
,
GKXC
,
NWGK
,
ck
::
Number
<
1
>>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
float
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
Number
<
2
>>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
GNHWC
,
GKYXC
,
GNHWK
,
ck
::
Number
<
2
>>
,
...
...
test/grouped_gemm/test_grouped_gemm_interface.cpp
View file @
e1a5137e
...
...
@@ -108,7 +108,7 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
// kloops % 2
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
320
,
768
};
EXPECT_
FALS
E
(
EXPECT_
TRU
E
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
));
// Not all gemms have same value for main_k0_block_loop!
...
...
test/grouped_gemm/test_grouped_gemm_util.hpp
View file @
e1a5137e
...
...
@@ -147,14 +147,14 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
32
,
4
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
1
,
4
,
16
,
1
>
,
ABlockTransferThreadClusterArrageOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
::
value
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
::
value
,
ABlockLdsAddExtraM
::
value
,
S
<
1
,
4
,
32
,
1
>
,
S
<
1
,
4
,
16
,
1
>
,
BBlockTransferThreadClusterArrageOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
::
value
,
...
...
Prev
1
…
14
15
16
17
18
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment