Commit e0041ad8 authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge remote-tracking branch 'origin/develop' into aosewski/drop_cshuffle

parents 3239201e ac9e01e2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp) add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp)
add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp) add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp)
add_executable(client_batchnorm_infer_nhwc batchnorm_infer_nhwc.cpp)
target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations)
target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations)
target_link_libraries(client_batchnorm_infer_nhwc PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp"
using XDataType = float;
using YDataType = float;
using ScaleDataType = float;
using BiasDataType = float;
using MeanVarDataType = float;
constexpr int Rank = 4;
constexpr int NumBatchNormReduceDim = 3;
using Normalize = ck::tensor_operation::element_wise::NormalizeInInfer;
const double epsilon = std::numeric_limits<float>::epsilon();
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> xyLengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> xyStrides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarLengths{256};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarStrides{1};
std::array<int, NumBatchNormReduceDim> reduceDims{0, 1, 2};
std::array<int, Rank - NumBatchNormReduceDim> invariantDims{3};
ck::index_t numXYElement =
std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
1,
std::multiplies<ck::index_t>());
SimpleDeviceMem x(sizeof(XDataType) * numXYElement);
SimpleDeviceMem y(sizeof(YDataType) * numXYElement);
SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem bias(sizeof(BiasDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem variance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
// values in variance need be non-negative
(void)hipMemset(
variance.GetDeviceBuffer(), 0, sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
std::array<ck::index_t, Rank> aligned_scaleBiasMeanVarStrides{0};
int i = 0;
for(auto dim : invariantDims)
{
assert(xyLengths[dim] == scaleBiasMeanVarLengths[i]);
aligned_scaleBiasMeanVarStrides[dim] = scaleBiasMeanVarStrides[i];
i++;
};
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
Normalize,
Rank>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
{xyStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{xyStrides},
{x.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
variance.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer()},
{y.GetDeviceBuffer()},
Normalize{epsilon});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
numXYElement * (sizeof(XDataType) + sizeof(YDataType)) +
numScaleBiasMeanVarElement * (sizeof(ScaleDataType) + sizeof(BiasDataType) +
sizeof(MeanVarDataType) + sizeof(MeanVarDataType));
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
{xyStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{xyStrides},
{x.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
variance.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer()},
{y.GetDeviceBuffer()},
Normalize{epsilon});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp)
add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp)
target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
std::size_t GetFlops(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& weights_spatial_lengths)
{
// 2 * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return static_cast<std::size_t>(2) * N * K * C *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename InDataType>
std::size_t
GetInputByte(ck::index_t N, ck::index_t C, const std::vector<ck::index_t>& input_spatial_lengths)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
return sizeof(InDataType) * N * C *
std::accumulate(std::begin(input_spatial_lengths),
std::end(input_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType>
std::size_t
GetWeightByte(ck::index_t K, ck::index_t C, const std::vector<ck::index_t>& weights_spatial_lengths)
{
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * K * C *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType>
std::size_t
GetOutputByte(ck::index_t N, ck::index_t K, const std::vector<ck::index_t>& output_spatial_lengths)
{
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return sizeof(OutDataType) * N * K *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool run_conv_bwd_data(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& in_spatial_lengths,
const std::vector<ck::index_t>& wei_spatial_lengths,
const std::vector<ck::index_t>& out_spatial_lengths)
{
std::size_t in_mem_size = GetInputByte<InDataType>(N, C, in_spatial_lengths);
std::size_t wei_mem_size = GetWeightByte<WeiDataType>(K, C, wei_spatial_lengths);
std::size_t out_mem_size = GetOutputByte<OutDataType>(N, K, out_spatial_lengths);
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem out(out_mem_size);
std::vector<ck::index_t> filter_strides(NumDimSpatial, 1);
std::vector<ck::index_t> filter_dilations(NumDimSpatial, 1);
std::vector<ck::index_t> input_left_pads(NumDimSpatial, 1);
std::vector<ck::index_t> input_right_pads(NumDimSpatial, 1);
using DeviceOp = ck::tensor_operation::device::DeviceConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
std::size_t flop = GetFlops(N, K, C, out_spatial_lengths, wei_spatial_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
wei_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
wei_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_gemm_add_multiply gemm_add_multiply.cpp)
target_link_libraries(client_gemm_add_multiply PRIVATE composable_kernel::device_operations)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_multiply.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
using ADataType = F16;
using BDataType = F16;
using D0DataType = F16;
using D1DataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 9)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD0 = std::stoi(argv[6]);
StrideD1 = std::stoi(argv[7]);
StrideE = std::stoi(argv[8]);
}
else
{
printf("arg1 to 8: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, D0Layout{}));
SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) *
f_matrix_space_size(M, N, StrideD1, D1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp =
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_reduce_nhwc_c reduce_nhwc_c.cpp)
target_link_libraries(client_reduce_nhwc_c PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp"
using InDataType = float;
using OutDataType = float;
using AccDataType = float;
using ReduceAdd = ck::reduce::Add;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivide = ck::tensor_operation::element_wise::UnaryDivide;
constexpr bool PropagateNan = false;
constexpr bool OutputIndex = false;
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> in_lengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> in_strides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumReduceDim> out_lengths{256};
std::array<ck::index_t, Rank - NumReduceDim> out_strides{1};
std::array<int, NumReduceDim> reduce_dims{0, 1, 2};
ck::index_t num_in_elements =
std::accumulate(in_lengths.begin(), in_lengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t num_out_elements =
std::accumulate(out_lengths.begin(), out_lengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t reduce_length = 1;
for(auto dim : reduce_dims)
reduce_length *= in_lengths[dim];
double alpha{1.0};
double beta{0.0};
SimpleDeviceMem in(sizeof(InDataType) * num_in_elements);
SimpleDeviceMem out(sizeof(OutDataType) * num_out_elements);
using DeviceOp = ck::tensor_operation::device::DeviceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceAdd,
PassThrough,
UnaryDivide,
PropagateNan,
OutputIndex>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths,
in_strides,
out_lengths,
out_strides,
reduce_dims,
alpha,
beta,
in.GetDeviceBuffer(),
nullptr,
out.GetDeviceBuffer(),
nullptr,
PassThrough{},
UnaryDivide{reduce_length});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = num_in_elements * sizeof(InDataType) +
(beta == 0.0f ? 1 : 2) * num_out_elements * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths,
in_strides,
out_lengths,
out_strides,
reduce_dims,
alpha,
beta,
in.GetDeviceBuffer(),
nullptr,
out.GetDeviceBuffer(),
nullptr,
PassThrough{},
UnaryDivide{reduce_length});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations)
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::KZYXGC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
{N, Di, Hi, Wi, G, C}, {K, Z, Y, X, G, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::KZYXGC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
{N, Di, Hi, Wi, G, C}, {K, Z, Y, X, G, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp)
target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_operations)
\ No newline at end of file
add_executable(client_groupnorm_swish groupnorm_swish.cpp)
target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_operations)
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment