Commit dfbb659a authored by Chao Liu's avatar Chao Liu
Browse files

upate contraction example

parent 809799bf
......@@ -43,14 +43,14 @@ struct DeviceContractionMultipleD : public BaseOperator
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
std::vector<index_t> a_ms_ks_lengths,
std::vector<index_t> a_ms_ks_strides,
std::vector<index_t> b_ns_ks_lengths,
std::vector<index_t> b_ns_ks_strides,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_lengths,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_strides,
std::vector<index_t> e_ms_ns_lengths,
std::vector<index_t> e_ms_ns_strides,
const std::vector<index_t>& a_ms_ns_lengths,
const std::vector<index_t>& a_ms_ks_strides,
const std::vector<index_t>& b_ns_ks_lengths,
const std::vector<index_t>& b_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_strides,
const std::vector<index_t>& e_ms_ns_lengths,
const std::vector<index_t>& e_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
......
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -106,7 +107,7 @@ template <index_t NumDimM,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename GemmAccDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
......@@ -165,9 +166,12 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
// Assume: A[M0, M1, M2, ..., K0, K1, K2, ...]
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_ms_ks_lengths_vec,
const std::vector<index_t>& a_ms_ks_strides_vec)
static auto MakeAGridDescriptor_M_K(const std::vector<index_t>& a_ms_ks_lengths_vec,
const std::vector<index_t>& a_ms_ks_strides_vec)
{
assert(a_ms_ks_lengths_vec.size() == NumDimM + NumDimK &&
a_ms_ks_strides_vec.size() == NumDimM + NumDimK);
......@@ -203,100 +207,12 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
make_tuple(mDimIds, kDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto MRaw = a_grid_desc_mraw_kraw.GetLength(I0);
const auto KRaw = a_grid_desc_mraw_kraw.GetLength(I1);
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
// Assume: B[N0, N1, N2, ..., K0, K1, K2, ...]
static auto MakeBGridDescriptor_BK0_N_BK1(const std::vector<index_t>& b_ns_ks_lengths_vec,
const std::vector<index_t>& b_ns_ks_strides_vec)
static auto MakeBGridDescriptor_N_K(const std::vector<index_t>& b_ns_ks_lengths_vec,
const std::vector<index_t>& b_ns_ks_strides_vec)
{
assert(b_ns_ks_lengths_vec.size() == NumDimN + NumDimK &&
b_ns_ks_strides_vec.size() == NumDimN + NumDimK);
......@@ -332,95 +248,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
make_tuple(nDimIds, kDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto NRaw = b_grid_desc_nraw_kraw.GetLength(I0);
const auto KRaw = b_grid_desc_nraw_kraw.GetLength(I1);
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
// assume E[M0, M1, M2, ..., N0, N1, N2...]
......@@ -461,63 +289,30 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
make_tuple(mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto MRaw = e_grid_desc_mraw_nraw.GetLength(I0);
const auto NRaw = e_grid_desc_mraw_nraw.GetLength(I1);
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(e_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
e_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
e_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return e_grid_desc_mraw_nraw;
}
static auto MakeDsGridDescriptor_M_N(
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_lengths_vec,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_strides_vec)
{
return generate_tuple(
[&](auto i) {
return DeviceOp::MakeEGridDescriptor_M_N(ds_ms_ns_lengths_vec[i],
ds_ms_ns_strides_vec[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_AK0_M_AK1 =
decltype(MakeAGridDescriptor_AK0_M_AK1(std::vector<index_t>{}, std::vector<index_t>{}));
using BGridDesc_BK0_N_BK1 =
decltype(MakeBGridDescriptor_BK0_N_BK1(std::vector<index_t>{}, std::vector<index_t>{}));
using EGridDesc_M_N =
decltype(MakeEGridDescriptor_M_N(std::vector<index_t>{}, std::vector<index_t>{}));
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K({}, {}));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K({}, {}));
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
......@@ -525,8 +320,9 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
AGridDesc_M_K,
BGridDesc_N_K,
DsGridDesc_M_N,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
......@@ -561,6 +357,13 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument
struct Argument : public BaseArgument
{
......@@ -568,27 +371,30 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const void* p_b_grid,
std::array<const void*, NumDTensor> p_ds_grid,
void* p_e_grid,
std::vector<index_t> a_ms_ns_lengths,
std::vector<index_t> a_ms_ks_strides,
std::vector<index_t> b_ns_ks_lengths,
std::vector<index_t> b_ns_ks_strides,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_lengths,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_strides,
std::vector<index_t> e_ms_ns_lengths,
std::vector<index_t> e_ms_ns_strides,
const std::vector<index_t>& a_ms_ns_lengths,
const std::vector<index_t>& a_ms_ks_strides,
const std::vector<index_t>& b_ns_ks_lengths,
const std::vector<index_t>& b_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_strides,
const std::vector<index_t>& e_ms_ns_lengths,
const std::vector<index_t>& e_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(a_ms_ns_lengths, a_ms_ks_strides)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(b_ns_ks_lengths, b_ns_ks_strides)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(e_ms_ns_lengths, e_ms_ns_strides)},
a_grid_desc_ak0_m_ak1_{
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_ms_ns_lengths, a_ms_ks_strides)},
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_ns_ks_lengths, b_ns_ks_strides)},
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(e_ms_ns_lengths, e_ms_ns_strides)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
......@@ -601,8 +407,22 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
ds_nz_stride_{},
e_nz_stride_{}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEGridDescriptor_M_N(ds_ms_ns_lengths[i], ds_ms_ns_strides[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
......@@ -610,18 +430,9 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
const auto d_grid_desc_m_n =
DeviceOp::MakeEGridDescriptor_M_N(ds_ms_ns_lengths[i], ds_ms_ns_strides[i]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(i) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
// for sanity check of vector memory access
......@@ -639,6 +450,15 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
e_nz_stride_ = e_ms_ns_strides[NumDimM + NumDimN - 1];
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
......@@ -646,20 +466,22 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_;
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
......@@ -684,29 +506,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.e_grid_desc_m_n_{ " << arg.e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.e_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
throw std::runtime_error(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting");
}
const index_t grid_size =
......@@ -728,9 +535,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
......@@ -754,18 +559,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg.block_2_etile_map_);
};
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
ave_time = launch_kernel(integral_constant<bool, true>{});
return launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
return launch_kernel(integral_constant<bool, false>{});
}
return ave_time;
}
// polymorphic
......@@ -776,12 +577,6 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
......@@ -789,8 +584,9 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return false;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
......@@ -878,14 +674,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
std::vector<index_t> a_ms_ns_lengths,
std::vector<index_t> a_ms_ks_strides,
std::vector<index_t> b_ns_ks_lengths,
std::vector<index_t> b_ns_ks_strides,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_lengths,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_strides,
std::vector<index_t> e_ms_ns_lengths,
std::vector<index_t> e_ms_ns_strides,
const std::vector<index_t>& a_ms_ns_lengths,
const std::vector<index_t>& a_ms_ks_strides,
const std::vector<index_t>& b_ns_ks_lengths,
const std::vector<index_t>& b_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_strides,
const std::vector<index_t>& e_ms_ns_lengths,
const std::vector<index_t>& e_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
......@@ -915,14 +711,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
std::vector<index_t> a_ms_ns_lengths,
std::vector<index_t> a_ms_ks_strides,
std::vector<index_t> b_ns_ks_lengths,
std::vector<index_t> b_ns_ks_strides,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_lengths,
std::array<std::vector<index_t>, NumDTensor> ds_ms_ns_strides,
std::vector<index_t> e_ms_ns_lengths,
std::vector<index_t> e_ms_ns_strides,
const std::vector<index_t>& a_ms_ns_lengths,
const std::vector<index_t>& a_ms_ks_strides,
const std::vector<index_t>& b_ns_ks_lengths,
const std::vector<index_t>& b_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_ms_ns_strides,
const std::vector<index_t>& e_ms_ns_lengths,
const std::vector<index_t>& e_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
......
......@@ -434,9 +434,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment