Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
defa2071
Commit
defa2071
authored
Nov 15, 2023
by
Adam Osewski
Browse files
Merge branch 'develop' into aosewski/ggemm_multi_d2
parents
28a68428
f2398f61
Changes
438
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
755 additions
and
31 deletions
+755
-31
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+10
-10
client_example/22_im2col_col2im/column_to_image.cpp
client_example/22_im2col_col2im/column_to_image.cpp
+10
-8
client_example/22_im2col_col2im/image_to_column.cpp
client_example/22_im2col_col2im/image_to_column.cpp
+10
-8
client_example/23_elementwise_transpose/CMakeLists.txt
client_example/23_elementwise_transpose/CMakeLists.txt
+2
-0
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
...ple/23_elementwise_transpose/elementwise_transpose_3d.cpp
+139
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
..._grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
+11
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
...scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
+212
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
+18
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
..._example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
+11
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
...d_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
+221
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
+13
-0
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
+2
-2
No files found.
client_example/18_groupnorm/groupnorm_swish.cpp
View file @
defa2071
...
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_
fwd_
swish.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
float
;
...
...
@@ -64,14 +64,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
G
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
Swish
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
Swish
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/22_im2col_col2im/column_to_image.cpp
View file @
defa2071
...
...
@@ -16,10 +16,10 @@
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ImageLayout
=
ck
::
tensor_layout
::
convolution
::
G
NHWC
;
using
ImageLayout
=
ck
::
tensor_layout
::
convolution
::
NHW
G
C
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
G
=
2
;
static
constexpr
ck
::
index_t
N
=
32
;
// batch size
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
...
...
@@ -52,18 +52,18 @@ int main()
std
::
array
<
ck
::
index_t
,
2
>
wei_spatial_lengths
{
Y
,
X
};
std
::
array
<
ck
::
index_t
,
2
>
out_spatial_lengths
{
Ho
,
Wo
};
// We have NHWGC in memory space
(G is dummy)
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
// We have NHWGC in memory space
// However, CK's API only accept
s
length
s
and stride
s
with order of GNCHW
.
// Hence, we need to adjust the order of stride
s.
std
::
array
<
ck
::
index_t
,
5
>
image_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
2
>
gemm_strides
{
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
3
>
gemm_strides
{
Y
*
X
*
C
,
G
*
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
using
namespace
ck
::
conv_tensor_rearrange_op
;
...
...
@@ -93,6 +93,7 @@ int main()
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
C
,
in_spatial_lengths
,
...
...
@@ -112,7 +113,7 @@ int main()
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
;
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -149,6 +150,7 @@ int main()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
C
,
in_spatial_lengths
,
...
...
client_example/22_im2col_col2im/image_to_column.cpp
View file @
defa2071
...
...
@@ -16,10 +16,10 @@
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ImageLayout
=
ck
::
tensor_layout
::
convolution
::
G
NHWC
;
using
ImageLayout
=
ck
::
tensor_layout
::
convolution
::
NHW
G
C
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
G
=
2
;
static
constexpr
ck
::
index_t
N
=
32
;
// batch size
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
...
...
@@ -52,11 +52,11 @@ int main()
std
::
array
<
ck
::
index_t
,
2
>
wei_spatial_lengths
{
Y
,
X
};
std
::
array
<
ck
::
index_t
,
2
>
out_spatial_lengths
{
Ho
,
Wo
};
// We have NHWGC in memory space
(G is dummy)
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
// We have NHWGC in memory space
// However, CK's API only accept
s
length
s
and stride
s
with order of GNCHW
.
// Hence, we need to adjust the order of stride
s.
std
::
array
<
ck
::
index_t
,
5
>
image_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
2
>
gemm_strides
{
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
3
>
gemm_strides
{
Y
*
X
*
C
,
G
*
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
...
...
@@ -64,7 +64,7 @@ int main()
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
using
namespace
ck
::
conv_tensor_rearrange_op
;
...
...
@@ -93,6 +93,7 @@ int main()
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
C
,
in_spatial_lengths
,
...
...
@@ -112,7 +113,7 @@ int main()
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
;
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -149,6 +150,7 @@ int main()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
C
,
in_spatial_lengths
,
...
...
client_example/23_elementwise_transpose/CMakeLists.txt
0 → 100644
View file @
defa2071
add_executable
(
client_elementwise_transpose3d elementwise_transpose_3d.cpp
)
target_link_libraries
(
client_elementwise_transpose3d PRIVATE composable_kernel::device_operations
)
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
const
int
N
=
16
;
const
int
C
=
8
;
const
int
D
=
8
;
const
int
H
=
8
;
const
int
W
=
8
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nchwd
=
{
N
,
C
,
H
,
W
,
D
};
auto
size
=
N
*
C
*
D
*
H
*
W
;
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, C, H, W, D
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
size
);
std
::
array
<
const
void
*
,
1
>
input
=
{
a_dev_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_dev_buf
.
GetDeviceBuffer
()};
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
5
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceElementwisePermuteInstance
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
0 → 100644
View file @
defa2071
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_operations
)
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_scaleadd_relu.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAddScaleAddRelu
=
ck
::
tensor_operation
::
element_wise
::
ScaleAddScaleAddRelu
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_scaleadd_relu
()
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
d0
(
sizeof
(
std
::
tuple_element_t
<
0
,
DDataTypes
>
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
d1
(
sizeof
(
std
::
tuple_element_t
<
1
,
DDataTypes
>
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
,
OutLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
std
::
tuple_element_t
<
0
,
DDataTypes
>
,
std
::
tuple_element_t
<
1
,
DDataTypes
>>
,
OutDataType
,
PassThrough
,
PassThrough
,
ScaleAddScaleAddRelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
d0
.
GetDeviceBuffer
(),
d1
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
,
out_lengths
},
{
out_strides
,
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ScaleAddScaleAddRelu
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
+
2
*
N
*
Ho
*
Wo
*
G
*
K
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
(
sizeof
(
OutDataType
)
+
sizeof
(
std
::
tuple_element_t
<
0
,
DDataTypes
>
)
+
sizeof
(
std
::
tuple_element_t
<
1
,
DDataTypes
>
))
*
N
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
d0
.
GetDeviceBuffer
(),
d1
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
,
out_lengths
},
{
out_strides
,
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ScaleAddScaleAddRelu
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
float
,
float
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
float
,
float
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
0 → 100644
View file @
defa2071
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations
)
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_ab
()
{
constexpr
ck
::
index_t
NumAs
=
2
;
constexpr
ck
::
index_t
NumBs
=
2
;
constexpr
float
scale
=
1.5
f
;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
using
InputDtype
=
ck
::
tuple_element_t
<
0
,
InDataType
>
;
using
InputBiasDtype
=
ck
::
tuple_element_t
<
1
,
InDataType
>
;
using
WeightDtype
=
ck
::
tuple_element_t
<
0
,
WeiDataType
>
;
using
WeightBiasDtype
=
ck
::
tuple_element_t
<
1
,
WeiDataType
>
;
SimpleDeviceMem
in
(
sizeof
(
InputDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
in_bias
(
sizeof
(
InputBiasDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeightDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
wei_bias
(
sizeof
(
WeightBiasDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
array
<
const
void
*
,
NumAs
>
as
=
{
in
.
GetDeviceBuffer
(),
in_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
NumBs
>
bs
=
{
wei
.
GetDeviceBuffer
(),
wei_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
0
>
ds
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Z
*
Y
*
X
+
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
2
*
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
OutDataType
=
ck
::
bhalf_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
WeiDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
OutDataType
=
float
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
OutDataType
=
int8_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
docs/sphinx/requirements.in
View file @
defa2071
rocm-docs-core>=0.20.0
sphinxcontrib-bibtex==2.
5.0
sphinxcontrib-bibtex==2.
6.1
docs/sphinx/requirements.txt
View file @
defa2071
...
...
@@ -103,7 +103,7 @@ requests==2.28.2
# via
# pygithub
# sphinx
rocm-docs-core==0.2
4
.0
rocm-docs-core==0.2
6
.0
# via -r requirements.in
six==1.16.0
# via
...
...
@@ -139,7 +139,7 @@ sphinx-notfound-page==0.8.3
# via rocm-docs-core
sphinxcontrib-applehelp==1.0.4
# via sphinx
sphinxcontrib-bibtex==2.
5.0
sphinxcontrib-bibtex==2.
6.1
# via -r requirements.in
sphinxcontrib-devhelp==1.0.2
# via sphinx
...
...
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
View file @
defa2071
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
Prev
1
2
3
4
5
6
…
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment