Commit de1afb7b authored by Rostyslav Geyyer's avatar Rostyslav Geyyer
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into lwpck-977

parents ce562aa6 f7331c60
...@@ -462,7 +462,6 @@ struct mfma_type<MfmaInstr::mfma_f64_16x16x4f64> ...@@ -462,7 +462,6 @@ struct mfma_type<MfmaInstr::mfma_f64_16x16x4f64>
} }
}; };
#if defined CK_ENABLE_FP8
template <> template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8f8> struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8f8>
{ {
...@@ -506,9 +505,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8f8> ...@@ -506,9 +505,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8f8>
intrin_mfma_f32_16x16x32f8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c); intrin_mfma_f32_16x16x32f8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
} }
}; };
#endif
#if defined CK_ENABLE_BF8
template <> template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8bf8> struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8bf8>
{ {
...@@ -552,9 +549,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8bf8> ...@@ -552,9 +549,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8bf8>
intrin_mfma_f32_16x16x32bf8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c); intrin_mfma_f32_16x16x32bf8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
} }
}; };
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <> template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8bf8> struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8bf8>
{ {
...@@ -598,9 +593,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8bf8> ...@@ -598,9 +593,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8bf8>
intrin_mfma_f32_16x16x32f8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c); intrin_mfma_f32_16x16x32f8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
} }
}; };
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <> template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8f8> struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8f8>
{ {
...@@ -644,7 +637,6 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8f8> ...@@ -644,7 +637,6 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8f8>
intrin_mfma_f32_16x16x32bf8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c); intrin_mfma_f32_16x16x32bf8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
} }
}; };
#endif
template <typename base_type, template <typename base_type,
index_t MPerXdlops, index_t MPerXdlops,
...@@ -792,7 +784,6 @@ struct MfmaSelector ...@@ -792,7 +784,6 @@ struct MfmaSelector
} }
#endif #endif
#if defined CK_ENABLE_FP8
template <> template <>
static constexpr auto GetMfma<f8_t, 32, 32>() static constexpr auto GetMfma<f8_t, 32, 32>()
{ {
...@@ -804,9 +795,7 @@ struct MfmaSelector ...@@ -804,9 +795,7 @@ struct MfmaSelector
{ {
return MfmaInstr::mfma_f32_16x16x32f8f8; return MfmaInstr::mfma_f32_16x16x32f8f8;
} }
#endif
#if defined CK_ENABLE_BF8
template <> template <>
static constexpr auto GetMfma<bf8_t, 32, 32>() static constexpr auto GetMfma<bf8_t, 32, 32>()
{ {
...@@ -818,9 +807,7 @@ struct MfmaSelector ...@@ -818,9 +807,7 @@ struct MfmaSelector
{ {
return MfmaInstr::mfma_f32_16x16x32bf8bf8; return MfmaInstr::mfma_f32_16x16x32bf8bf8;
} }
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <> template <>
static constexpr auto GetMfma<f8_t, 32, 32, bf8_t>() static constexpr auto GetMfma<f8_t, 32, 32, bf8_t>()
{ {
...@@ -832,9 +819,7 @@ struct MfmaSelector ...@@ -832,9 +819,7 @@ struct MfmaSelector
{ {
return MfmaInstr::mfma_f32_16x16x32f8bf8; return MfmaInstr::mfma_f32_16x16x32f8bf8;
} }
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <> template <>
static constexpr auto GetMfma<bf8_t, 32, 32, f8_t>() static constexpr auto GetMfma<bf8_t, 32, 32, f8_t>()
{ {
...@@ -846,7 +831,6 @@ struct MfmaSelector ...@@ -846,7 +831,6 @@ struct MfmaSelector
{ {
return MfmaInstr::mfma_f32_16x16x32bf8f8; return MfmaInstr::mfma_f32_16x16x32bf8f8;
} }
#endif
static constexpr auto selected_mfma = static constexpr auto selected_mfma =
mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops, additional_type>()>{}; mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops, additional_type>()>{};
...@@ -1051,18 +1035,10 @@ struct XdlopsGemm ...@@ -1051,18 +1035,10 @@ struct XdlopsGemm
static_assert( static_assert(
is_same<base_type, double>::value || is_same<base_type, float>::value || is_same<base_type, double>::value || is_same<base_type, float>::value ||
is_same<base_type, half_t>::value || is_same<base_type, bhalf_t>::value || is_same<base_type, half_t>::value || is_same<base_type, bhalf_t>::value ||
is_same<base_type, int8_t>::value is_same<base_type, int8_t>::value || is_same<base_type, f8_t>::value ||
#if defined CK_ENABLE_FP8 is_same<base_type, bf8_t>::value ||
|| is_same<base_type, f8_t>::value (is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value) ||
#endif (is_same<base_type, bf8_t>::value && is_same<additional_type, f8_t>::value),
#if defined CK_ENABLE_BF8
|| is_same<base_type, bf8_t>::value
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
|| (is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value) ||
(is_same<base_type, bf8_t>::value && is_same<additional_type, f8_t>::value)
#endif
,
"base base_type must be double, float, half, bfloat16, int8_t, f8_t or bf8_t!"); "base base_type must be double, float, half, bfloat16, int8_t, f8_t or bf8_t!");
static_for<0, KPack / mfma_instr.k_per_blk, 1>{}([&](auto k) { static_for<0, KPack / mfma_instr.k_per_blk, 1>{}([&](auto k) {
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_AMD_XDLOPS_HPP #pragma once
#define CK_AMD_XDLOPS_HPP
#include "data_type.hpp"
namespace ck { namespace ck {
...@@ -355,7 +352,6 @@ struct intrin_mfma_f64_16x16x4f64<16, 16> ...@@ -355,7 +352,6 @@ struct intrin_mfma_f64_16x16x4f64<16, 16>
} }
}; };
#if defined CK_ENABLE_FP8
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16f8f8; struct intrin_mfma_f32_32x32x16f8f8;
...@@ -418,9 +414,7 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16> ...@@ -418,9 +414,7 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
#endif #endif
} }
}; };
#endif
#if defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8bf8; struct intrin_mfma_f32_32x32x16bf8bf8;
...@@ -483,9 +477,7 @@ struct intrin_mfma_f32_16x16x32bf8bf8<16, 16> ...@@ -483,9 +477,7 @@ struct intrin_mfma_f32_16x16x32bf8bf8<16, 16>
#endif #endif
} }
}; };
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16f8bf8; struct intrin_mfma_f32_32x32x16f8bf8;
...@@ -548,9 +540,7 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16> ...@@ -548,9 +540,7 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16>
#endif #endif
} }
}; };
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8f8; struct intrin_mfma_f32_32x32x16bf8f8;
...@@ -613,6 +603,5 @@ struct intrin_mfma_f32_16x16x32bf8f8<16, 16> ...@@ -613,6 +603,5 @@ struct intrin_mfma_f32_16x16x32bf8f8<16, 16>
#endif #endif
} }
}; };
#endif
} // namespace ck } // namespace ck
#endif
...@@ -9,11 +9,9 @@ namespace ck { ...@@ -9,11 +9,9 @@ namespace ck {
using bhalf_t = ushort; using bhalf_t = ushort;
using half_t = _Float16; using half_t = _Float16;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 using int4_t = _BitInt(4);
using int4_t = _BitInt(4); using f8_t = _BitInt(8);
#endif using bf8_t = unsigned _BitInt(8);
using f8_t = _BitInt(8);
using bf8_t = unsigned _BitInt(8);
// vector_type // vector_type
template <typename T, index_t N> template <typename T, index_t N>
...@@ -1123,5 +1121,4 @@ struct NumericUtils<bf8_t> ...@@ -1123,5 +1121,4 @@ struct NumericUtils<bf8_t>
static constexpr int bias = 16; // negative zero nan mode static constexpr int bias = 16; // negative zero nan mode
// static constexpr int bias = 15; // ieee mode // static constexpr int bias = 15; // ieee mode
}; };
} // namespace ck } // namespace ck
...@@ -192,6 +192,8 @@ inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, ...@@ -192,6 +192,8 @@ inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b,
#else #else
c = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b), c, false); c = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b), c, false);
#endif #endif
#elif defined(CK_USE_AMD_V_DOT4_I32_I8_GFX11)
c = __builtin_amdgcn_sudot4(true, bit_cast<int32_t>(a), true, bit_cast<int32_t>(b), c, false);
#else #else
const vector_type<int8_t, 4> a_vector{a}; const vector_type<int8_t, 4> a_vector{a};
const vector_type<int8_t, 4> b_vector{b}; const vector_type<int8_t, 4> b_vector{b};
......
...@@ -150,28 +150,6 @@ __host__ __device__ constexpr T clamp(const T& x, const T& lowerbound, const T& ...@@ -150,28 +150,6 @@ __host__ __device__ constexpr T clamp(const T& x, const T& lowerbound, const T&
return min(max(x, lowerbound), upperbound); return min(max(x, lowerbound), upperbound);
} }
// disallow implicit type casting
template <typename T>
__device__ T exp(T x);
// TODO: add f16 support using v_exp_f16
template <>
__device__ float exp<float>(float x)
{
return __expf(x);
}
template <>
__device__ double exp<double>(double x)
{
return exp(x);
}
static inline __host__ float exp(float x) { return std::expf(x); }
static inline __host__ double exp(double x) { return std::exp(x); }
// greatest common divisor, aka highest common factor // greatest common divisor, aka highest common factor
__host__ __device__ constexpr index_t gcd(index_t x, index_t y) __host__ __device__ constexpr index_t gcd(index_t x, index_t y)
{ {
......
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/type.hpp" #include "ck/utility/type.hpp"
#include "ck/utility/type_convert.hpp"
namespace ck { namespace ck {
namespace math { namespace math {
...@@ -92,14 +93,96 @@ static inline __host__ float sqrt(float x) { return std::sqrt(x); }; ...@@ -92,14 +93,96 @@ static inline __host__ float sqrt(float x) { return std::sqrt(x); };
static inline __host__ double sqrt(double x) { return std::sqrt(x); }; static inline __host__ double sqrt(double x) { return std::sqrt(x); };
static inline __host__ half_t tanh(half_t x) template <typename T>
inline __host__ T tanh(T x)
{ {
return static_cast<half_t>(std::tanh(static_cast<float>(x))); return ck::type_convert<T>(std::tanhf(ck::type_convert<float>(x)));
}; };
static inline __host__ float tanh(float x) { return std::tanh(x); }; template <>
inline __host__ float tanh<float>(float x)
{
return std::tanhf(x);
};
template <>
inline __host__ double tanh<double>(double x)
{
return std::tanh(x);
};
template <typename T>
inline __host__ T exp(T x)
{
return ck::type_convert<T>(std::expf(ck::type_convert<float>(x)));
}
template <>
inline __host__ float exp<float>(float x)
{
return std::expf(x);
}
static inline __host__ double tanh(double x) { return std::tanh(x); }; template <>
inline __host__ double exp<double>(double x)
{
return std::exp(x);
}
template <typename T>
inline __host__ T log(T x)
{
return ck::type_convert<T>(std::logf(ck::type_convert<float>(x)));
}
template <>
inline __host__ float log<float>(float x)
{
return std::logf(x);
}
template <>
inline __host__ double log<double>(double x)
{
return std::log(x);
}
template <typename T>
inline __host__ T pow(T x, T gamma)
{
return ck::type_convert<T>(
std::powf(ck::type_convert<float>(x), ck::type_convert<float>(gamma)));
}
template <>
inline __host__ float pow<float>(float x, float gamma)
{
return std::powf(x, gamma);
}
template <>
inline __host__ double pow<double>(double x, double gamma)
{
return std::pow(x, gamma);
}
template <typename T>
inline __host__ T expm1(T x)
{
return ck::type_convert<T>(std::expm1f(ck::type_convert<float>(x)));
}
template <>
inline __host__ float expm1<float>(float x)
{
return std::expm1f(x);
}
template <>
inline __host__ double expm1<double>(double x)
{
return std::expm1(x);
}
// math functions for the HIP kernel, some are implemented by calling hip builtin functions // math functions for the HIP kernel, some are implemented by calling hip builtin functions
...@@ -181,14 +264,107 @@ static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x); ...@@ -181,14 +264,107 @@ static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x);
static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); }; static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); };
static inline __device__ half_t tanh(half_t x) template <typename T>
inline __device__ T tanh(T x)
{
return ck::type_convert<T>(::tanhf(ck::type_convert<float>(x)));
};
template <>
inline __device__ float tanh<float>(float x)
{ {
return static_cast<half_t>(::tanhf(static_cast<float>(x))); return ::tanhf(x);
}; };
static inline __device__ float tanh(float x) { return ::tanhf(x); }; template <>
inline __device__ double tanh<double>(double x)
{
return ::tanh(x);
};
template <typename T>
inline __device__ T exp(T x)
{
return ck::type_convert<T>(__expf(ck::type_convert<float>(x)));
};
template <>
inline __device__ half_t exp<half_t>(half_t x)
{
return hexp(x);
};
template <>
inline __device__ float exp<float>(float x)
{
return __expf(x);
};
static inline __device__ double tanh(double x) { return ::tanh(x); }; template <>
inline __device__ double exp<double>(double x)
{
return exp(x);
};
template <typename T>
inline __device__ T log(T x)
{
return ck::type_convert<T>(__logf(ck::type_convert<float>(x)));
};
template <>
inline __device__ half_t log<half_t>(half_t x)
{
return hlog(x);
};
template <>
inline __device__ float log<float>(float x)
{
return __logf(x);
};
template <>
inline __device__ double log<double>(double x)
{
return log(x);
};
template <typename T>
inline __device__ T pow(T x, T gamma)
{
return ck::type_convert<T>(powf(ck::type_convert<float>(x), ck::type_convert<float>(gamma)));
};
template <>
inline __device__ float pow<float>(float x, float gamma)
{
return powf(x, gamma);
};
template <>
inline __device__ double pow<double>(double x, double gamma)
{
return pow(x, gamma);
};
template <typename T>
inline __device__ T expm1(T x)
{
return ck::type_convert<T>(expm1f(ck::type_convert<float>(x)));
};
template <>
inline __device__ float expm1<float>(float x)
{
return expm1f(x);
};
template <>
inline __device__ double expm1<double>(double x)
{
return expm1(x);
};
} // namespace math } // namespace math
} // namespace ck } // namespace ck
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#define CK_STATICALLY_INDEXED_ARRAY_MULTI_INDEX_HPP #define CK_STATICALLY_INDEXED_ARRAY_MULTI_INDEX_HPP
#include "common_header.hpp" #include "common_header.hpp"
#include "ck/utility/math_v2.hpp"
namespace ck { namespace ck {
......
...@@ -128,11 +128,9 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -128,11 +128,9 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
} }
float v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc));
arg.out_element_op_(v_out, v_acc); arg.output_(g, n, k, wo) = v_out;
arg.output_(g, n, k, wo) = ck::type_convert<OutDataType>(v_out);
}; };
make_ParallelTensorFunctor(func, make_ParallelTensorFunctor(func,
...@@ -184,11 +182,9 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -184,11 +182,9 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
} }
float v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc));
arg.out_element_op_(v_out, v_acc); arg.output_(g, n, k, ho, wo) = v_out;
arg.output_(g, n, k, ho, wo) = ck::type_convert<OutDataType>(v_out);
}; };
make_ParallelTensorFunctor(func, make_ParallelTensorFunctor(func,
...@@ -253,11 +249,9 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -253,11 +249,9 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
} }
float v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc));
arg.out_element_op_(v_out, v_acc); arg.output_(g, n, k, d_o, ho, wo) = v_out;
arg.output_(g, n, k, d_o, ho, wo) = ck::type_convert<OutDataType>(v_out);
}; };
make_ParallelTensorFunctor(func, make_ParallelTensorFunctor(func,
......
...@@ -20,8 +20,9 @@ template <typename XDataType, ...@@ -20,8 +20,9 @@ template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename AccDataType, typename SaveMeanInvStdDataType,
typename AccElementwiseOperation> typename ComputeDataType,
typename YElementwiseOperation>
struct ReferenceGroupnorm : public device::BaseOperator struct ReferenceGroupnorm : public device::BaseOperator
{ {
// x = [N, H, W, G, C] // x = [N, H, W, G, C]
...@@ -35,14 +36,18 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -35,14 +36,18 @@ struct ReferenceGroupnorm : public device::BaseOperator
const Tensor<GammaDataType>& gamma, const Tensor<GammaDataType>& gamma,
const Tensor<BetaDataType>& beta, const Tensor<BetaDataType>& beta,
Tensor<YDataType>& y, Tensor<YDataType>& y,
AccElementwiseOperation acc_elementwise_op, Tensor<SaveMeanInvStdDataType>& save_mean,
Tensor<SaveMeanInvStdDataType>& save_inv_std,
YElementwiseOperation y_elementwise_op,
const std::vector<index_t> lengths, const std::vector<index_t> lengths,
AccDataType epsilon) ComputeDataType epsilon)
: x_(x), : x_(x),
gamma_(gamma), gamma_(gamma),
beta_(beta), beta_(beta),
y_(y), y_(y),
acc_elementwise_op_(acc_elementwise_op), save_mean_(save_mean),
save_inv_std_(save_inv_std),
y_elementwise_op_(y_elementwise_op),
lengths_(lengths), lengths_(lengths),
epsilon_(epsilon) epsilon_(epsilon)
{ {
...@@ -52,9 +57,11 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -52,9 +57,11 @@ struct ReferenceGroupnorm : public device::BaseOperator
const Tensor<XDataType> gamma_; const Tensor<XDataType> gamma_;
const Tensor<XDataType> beta_; const Tensor<XDataType> beta_;
Tensor<YDataType>& y_; Tensor<YDataType>& y_;
AccElementwiseOperation acc_elementwise_op_; Tensor<SaveMeanInvStdDataType>& save_mean_;
Tensor<SaveMeanInvStdDataType>& save_inv_std_;
YElementwiseOperation y_elementwise_op_;
std::vector<index_t> lengths_; std::vector<index_t> lengths_;
AccDataType epsilon_; ComputeDataType epsilon_;
}; };
// Invoker // Invoker
...@@ -68,8 +75,8 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -68,8 +75,8 @@ struct ReferenceGroupnorm : public device::BaseOperator
int G = arg.lengths_[3]; int G = arg.lengths_[3];
int C = arg.lengths_[4]; int C = arg.lengths_[4];
Tensor<AccDataType> mean({N, G}); Tensor<ComputeDataType> mean({N, G});
Tensor<AccDataType> var({N, G}); Tensor<ComputeDataType> var({N, G});
// Compute mean & var in [H, W, C] by Welford Algorithm // Compute mean & var in [H, W, C] by Welford Algorithm
// TODO - parallel for each HWC // TODO - parallel for each HWC
...@@ -78,9 +85,9 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -78,9 +85,9 @@ struct ReferenceGroupnorm : public device::BaseOperator
{ {
for(int g = 0; g < G; ++g) for(int g = 0; g < G; ++g)
{ {
AccDataType mean_val = type_convert<AccDataType>(0.0f); ComputeDataType mean_val = type_convert<ComputeDataType>(0.0f);
AccDataType var_val = type_convert<AccDataType>(0.0f); ComputeDataType var_val = type_convert<ComputeDataType>(0.0f);
int32_t curr_count = 0; int32_t curr_count = 0;
for(int h = 0; h < H; ++h) for(int h = 0; h < H; ++h)
{ {
...@@ -89,10 +96,11 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -89,10 +96,11 @@ struct ReferenceGroupnorm : public device::BaseOperator
for(int c = 0; c < C; ++c) for(int c = 0; c < C; ++c)
{ {
curr_count++; curr_count++;
AccDataType x = type_convert<AccDataType>(arg.x_(n, h, w, g, c)); ComputeDataType x =
AccDataType delta = x - mean_val; type_convert<ComputeDataType>(arg.x_(n, h, w, g, c));
ComputeDataType delta = x - mean_val;
mean_val += delta / curr_count; mean_val += delta / curr_count;
AccDataType delta2 = x - mean_val; ComputeDataType delta2 = x - mean_val;
var_val += delta * delta2; var_val += delta * delta2;
} }
} }
...@@ -100,6 +108,12 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -100,6 +108,12 @@ struct ReferenceGroupnorm : public device::BaseOperator
mean(n, g) = mean_val; mean(n, g) = mean_val;
var(n, g) = var_val / curr_count; var(n, g) = var_val / curr_count;
arg.save_mean_(n, g) = ck::type_convert<SaveMeanInvStdDataType>(mean(n, g));
ComputeDataType divisor =
static_cast<ComputeDataType>(1) / ck::math::sqrt(var(n, g) + arg.epsilon_);
arg.save_inv_std_(n, g) = ck::type_convert<SaveMeanInvStdDataType>(divisor);
} }
} }
...@@ -114,15 +128,19 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -114,15 +128,19 @@ struct ReferenceGroupnorm : public device::BaseOperator
{ {
for(int c = 0; c < C; ++c) for(int c = 0; c < C; ++c)
{ {
AccDataType x = type_convert<AccDataType>(arg.x_(n, h, w, g, c)); ComputeDataType x =
AccDataType gamma = type_convert<AccDataType>(arg.gamma_(g, c)); type_convert<ComputeDataType>(arg.x_(n, h, w, g, c));
AccDataType beta = type_convert<AccDataType>(arg.beta_(g, c)); ComputeDataType gamma =
AccDataType mean_val = type_convert<AccDataType>(mean(n, g)); type_convert<ComputeDataType>(arg.gamma_(g, c));
AccDataType var_val = type_convert<AccDataType>(var(n, g)); ComputeDataType beta =
AccDataType y = gamma * (x - mean_val) / type_convert<ComputeDataType>(arg.beta_(g, c));
ck::math::sqrt(arg.epsilon_ + var_val) + ComputeDataType mean_val =
beta; type_convert<ComputeDataType>(mean(n, g));
arg.acc_elementwise_op_(y, y); ComputeDataType var_val = type_convert<ComputeDataType>(var(n, g));
ComputeDataType y = gamma * (x - mean_val) /
ck::math::sqrt(arg.epsilon_ + var_val) +
beta;
arg.y_elementwise_op_(y, y);
arg.y_(n, h, w, g, c) = type_convert<YDataType>(y); arg.y_(n, h, w, g, c) = type_convert<YDataType>(y);
} }
} }
...@@ -159,11 +177,14 @@ struct ReferenceGroupnorm : public device::BaseOperator ...@@ -159,11 +177,14 @@ struct ReferenceGroupnorm : public device::BaseOperator
const Tensor<GammaDataType>& gamma, const Tensor<GammaDataType>& gamma,
const Tensor<BetaDataType>& beta, const Tensor<BetaDataType>& beta,
Tensor<YDataType>& y, Tensor<YDataType>& y,
AccElementwiseOperation acc_elementwise_op, Tensor<SaveMeanInvStdDataType>& save_mean,
Tensor<SaveMeanInvStdDataType>& save_inv_std,
YElementwiseOperation y_elementwise_op,
const std::vector<index_t> lengths, const std::vector<index_t> lengths,
AccDataType epsilon) ComputeDataType epsilon)
{ {
return Argument{x, gamma, beta, y, acc_elementwise_op, lengths, epsilon}; return Argument{
x, gamma, beta, y, save_mean, save_inv_std, y_elementwise_op, lengths, epsilon};
} }
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
......
...@@ -20,8 +20,9 @@ template <typename XDataType, ...@@ -20,8 +20,9 @@ template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename AccDataType, typename SaveMeanInvStdDataType,
typename AccElementwiseOperation, typename ComputeDataType,
typename YElementwiseOperation,
index_t Rank, index_t Rank,
index_t NumReduceDim> index_t NumReduceDim>
struct ReferenceLayernorm : public device::BaseOperator struct ReferenceLayernorm : public device::BaseOperator
...@@ -36,15 +37,19 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -36,15 +37,19 @@ struct ReferenceLayernorm : public device::BaseOperator
const Tensor<GammaDataType>& gamma_n, const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n, const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n, Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op, Tensor<SaveMeanInvStdDataType>& save_mean_m,
Tensor<SaveMeanInvStdDataType>& save_inv_std_m,
YElementwiseOperation y_elementwise_op,
const std::vector<index_t> lengths, const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims, const std::vector<index_t> reduceDims,
AccDataType epsilon) ComputeDataType epsilon)
: x_m_n_(x_m_n), : x_m_n_(x_m_n),
gamma_n_(gamma_n), gamma_n_(gamma_n),
beta_n_(beta_n), beta_n_(beta_n),
y_m_n_(y_m_n), y_m_n_(y_m_n),
acc_elementwise_op_(acc_elementwise_op), save_mean_m_(save_mean_m),
save_inv_std_m_(save_inv_std_m),
y_elementwise_op_(y_elementwise_op),
lengths_(lengths), lengths_(lengths),
reduceDims_(reduceDims), reduceDims_(reduceDims),
epsilon_(epsilon) epsilon_(epsilon)
...@@ -55,10 +60,12 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -55,10 +60,12 @@ struct ReferenceLayernorm : public device::BaseOperator
const Tensor<XDataType> gamma_n_; const Tensor<XDataType> gamma_n_;
const Tensor<XDataType> beta_n_; const Tensor<XDataType> beta_n_;
Tensor<YDataType>& y_m_n_; Tensor<YDataType>& y_m_n_;
AccElementwiseOperation acc_elementwise_op_; Tensor<SaveMeanInvStdDataType>& save_mean_m_;
Tensor<SaveMeanInvStdDataType>& save_inv_std_m_;
YElementwiseOperation y_elementwise_op_;
std::vector<index_t> lengths_; std::vector<index_t> lengths_;
std::vector<index_t> reduceDims_; std::vector<index_t> reduceDims_;
AccDataType epsilon_; ComputeDataType epsilon_;
}; };
// Invoker // Invoker
...@@ -69,8 +76,8 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -69,8 +76,8 @@ struct ReferenceLayernorm : public device::BaseOperator
int M = arg.lengths_[0]; int M = arg.lengths_[0];
int N = arg.lengths_[1]; int N = arg.lengths_[1];
Tensor<AccDataType> mean({M}); Tensor<ComputeDataType> mean({M});
Tensor<AccDataType> var({M}); Tensor<ComputeDataType> var({M});
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
...@@ -79,7 +86,7 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -79,7 +86,7 @@ struct ReferenceLayernorm : public device::BaseOperator
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n)); auto x_val = ck::type_convert<ComputeDataType>(arg.x_m_n_(m, n));
mean(m) += x_val; mean(m) += x_val;
var(m) += x_val * x_val; var(m) += x_val * x_val;
} }
...@@ -90,17 +97,21 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -90,17 +97,21 @@ struct ReferenceLayernorm : public device::BaseOperator
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
AccDataType divisor = ComputeDataType divisor =
static_cast<AccDataType>(1) / ck::math::sqrt(var(m) + arg.epsilon_); static_cast<ComputeDataType>(1) / ck::math::sqrt(var(m) + arg.epsilon_);
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n)); auto x_val = ck::type_convert<ComputeDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) * divisor; auto gamma_val = ck::type_convert<ComputeDataType>(arg.gamma_n_(n));
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n); auto beta_val = ck::type_convert<ComputeDataType>(arg.beta_n_(n));
arg.acc_elementwise_op_(y_val, y_val); auto y_val = (x_val - mean(m)) * divisor;
y_val = (y_val * gamma_val) + beta_val;
arg.y_elementwise_op_(y_val, y_val);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val); arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
} }
arg.save_mean_m_(m) = ck::type_convert<SaveMeanInvStdDataType>(mean(m));
arg.save_inv_std_m_(m) = ck::type_convert<SaveMeanInvStdDataType>(divisor);
} }
return 0; return 0;
...@@ -140,13 +151,23 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -140,13 +151,23 @@ struct ReferenceLayernorm : public device::BaseOperator
const Tensor<GammaDataType>& gamma_n, const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n, const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n, Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op, Tensor<SaveMeanInvStdDataType>& save_mean_m,
Tensor<SaveMeanInvStdDataType>& save_inv_std_m,
YElementwiseOperation y_elementwise_op,
const std::vector<index_t> lengths, const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims, const std::vector<index_t> reduceDims,
AccDataType epsilon) ComputeDataType epsilon)
{ {
return Argument{ return Argument{x_m_n,
x_m_n, gamma_n, beta_n, y_m_n, acc_elementwise_op, lengths, reduceDims, epsilon}; gamma_n,
beta_n,
y_m_n,
save_mean_m,
save_inv_std_m,
y_elementwise_op,
lengths,
reduceDims,
epsilon};
} }
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
......
...@@ -20,12 +20,8 @@ using F16 = ck::half_t; ...@@ -20,12 +20,8 @@ using F16 = ck::half_t;
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using I8 = int8_t; using I8 = int8_t;
using I32 = int32_t; using I32 = int32_t;
#if defined CK_ENABLE_FP8 using F8 = ck::f8_t;
using F8 = ck::f8_t; using BF8 = ck::bf8_t;
#endif
#if defined CK_ENABLE_BF8
using BF8 = ck::bf8_t;
#endif
using Empty_Tuple = ck::Tuple<>; using Empty_Tuple = ck::Tuple<>;
......
...@@ -240,11 +240,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw ...@@ -240,11 +240,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> && if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>) is_same_v<OutLayout, NWK>)
{ {
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(op_ptrs); add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
} }
#endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
...@@ -267,17 +269,23 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw ...@@ -267,17 +269,23 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> && if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>) is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{ {
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs); add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
#ifdef DL_KERNELS }
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
#endif #endif
#if defined(DL_KERNELS) && defined(CK_ENABLE_FP32)
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
} }
#endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
...@@ -306,14 +314,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw ...@@ -306,14 +314,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> && if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>) is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{ {
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs); add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
} }
#endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
......
...@@ -98,30 +98,31 @@ struct DeviceOperationInstanceFactory< ...@@ -98,30 +98,31 @@ struct DeviceOperationInstanceFactory<
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> && if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>) is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{ {
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs); add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
} }
#endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs); add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(op_ptrs); add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs); add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> && if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>) is_same_v<OutDataType, int8_t>)
{ {
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs); add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
} }
......
...@@ -155,7 +155,7 @@ struct DeviceOperationInstanceFactory< ...@@ -155,7 +155,7 @@ struct DeviceOperationInstanceFactory<
std::vector<std::unique_ptr<DeviceOp>> op_ptrs; std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> && if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<CDataType, float>) is_same_v<CDataType, float> && is_same_v<ComputeType, float>)
{ {
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> && if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>) is_same_v<CLayout, Row>)
...@@ -180,8 +180,8 @@ struct DeviceOperationInstanceFactory< ...@@ -180,8 +180,8 @@ struct DeviceOperationInstanceFactory<
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> && if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>) is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{ {
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> && if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>) is_same_v<CLayout, Row>)
...@@ -206,8 +206,8 @@ struct DeviceOperationInstanceFactory< ...@@ -206,8 +206,8 @@ struct DeviceOperationInstanceFactory<
} }
#endif #endif
#if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8)) #if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
else if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> && if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>) is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{ {
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> && if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>) is_same_v<CLayout, Row>)
...@@ -230,8 +230,8 @@ struct DeviceOperationInstanceFactory< ...@@ -230,8 +230,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_splitk_f8_f16_f16_km_nk_mn_instances(op_ptrs); add_device_gemm_xdl_splitk_f8_f16_f16_km_nk_mn_instances(op_ptrs);
} }
} }
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> && if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, half_t>) is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{ {
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> && if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>) is_same_v<CLayout, Row>)
......
...@@ -627,8 +627,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -627,8 +627,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f16_instances(op_ptrs); add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
...@@ -637,9 +637,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -637,9 +637,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances( add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
...@@ -650,8 +649,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -650,8 +649,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(is_same_v<InLayout, NWGC> && is_same_v<WeiLayout, GKXC> && if constexpr(is_same_v<InLayout, NWGC> && is_same_v<WeiLayout, GKXC> &&
is_same_v<OutLayout, NWGK>) is_same_v<OutLayout, NWGK>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
...@@ -662,16 +661,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -662,16 +661,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f16_instances(op_ptrs); add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f16_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_bf16_f32_bf16_instances( add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_bf16_f32_bf16_instances(
op_ptrs); op_ptrs);
...@@ -680,7 +678,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -680,7 +678,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif #endif
} }
} }
else if constexpr(NumDimSpatial == 2) if constexpr(NumDimSpatial == 2)
{ {
if constexpr(is_same_v<InLayout, GNHWC> && is_same_v<WeiLayout, GKYXC> && if constexpr(is_same_v<InLayout, GNHWC> && is_same_v<WeiLayout, GKYXC> &&
is_same_v<OutLayout, GNHWK>) is_same_v<OutLayout, GNHWK>)
...@@ -698,8 +696,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -698,8 +696,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f16_instances( add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f16_instances(
...@@ -710,9 +708,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -710,9 +708,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances( add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
...@@ -723,8 +720,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -723,8 +720,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(is_same_v<InLayout, NHWGC> && is_same_v<WeiLayout, GKYXC> && if constexpr(is_same_v<InLayout, NHWGC> && is_same_v<WeiLayout, GKYXC> &&
is_same_v<OutLayout, NHWGK>) is_same_v<OutLayout, NHWGK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
...@@ -739,8 +736,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -739,8 +736,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f16_instances( add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f16_instances(
...@@ -751,9 +748,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -751,9 +748,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances( add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances(
...@@ -765,7 +761,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -765,7 +761,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif #endif
} }
} }
else if constexpr(NumDimSpatial == 3) if constexpr(NumDimSpatial == 3)
{ {
if constexpr(is_same_v<InLayout, GNDHWC> && is_same_v<WeiLayout, GKZYXC> && if constexpr(is_same_v<InLayout, GNDHWC> && is_same_v<WeiLayout, GKZYXC> &&
is_same_v<OutLayout, GNDHWK>) is_same_v<OutLayout, GNDHWK>)
...@@ -783,8 +779,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -783,8 +779,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f16_instances( add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f16_instances(
...@@ -799,9 +795,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -799,9 +795,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances( add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
...@@ -822,8 +817,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -822,8 +817,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(is_same_v<InLayout, NDHWGC> && is_same_v<WeiLayout, GKZYXC> && if constexpr(is_same_v<InLayout, NDHWGC> && is_same_v<WeiLayout, GKZYXC> &&
is_same_v<OutLayout, NDHWGK>) is_same_v<OutLayout, NDHWGK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
...@@ -838,10 +833,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -838,10 +833,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeA, half_t> && is_same_v<ComputeTypeB, half_t>)
is_same_v<ComputeTypeB, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f16_instances( add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
...@@ -856,9 +850,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -856,9 +850,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<WeiDataType, float> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<OutDataType, ck::bhalf_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances( add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
...@@ -879,9 +872,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -879,9 +872,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8 #if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, bf8_t> &&
is_same_v<ComputeTypeA, bf8_t> && is_same_v<ComputeTypeB, f8_t>) is_same_v<ComputeTypeB, f8_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
op_ptrs); op_ptrs);
......
...@@ -19,13 +19,13 @@ namespace instance { ...@@ -19,13 +19,13 @@ namespace instance {
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
// FP16 // FP16
void add_device_normalization_rank_2_1_f16_instances( void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 2, 1>>>&); std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 2, 1>>>&);
void add_device_normalization_rank_4_3_f16_instances( void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 4, 3>>>&); std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 4, 3>>>&);
void add_device_normalization_rank_5_3_f16_instances( void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 5, 3>>>&); std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 5, 3>>>&);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
// FP32 // FP32
...@@ -42,14 +42,15 @@ template <typename XDataType, ...@@ -42,14 +42,15 @@ template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank, index_t Rank,
index_t NumReduceDim> index_t NumReduceDim>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormalization< struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormalization<
XDataType, XDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
F32,
YDataType, YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
Rank, Rank,
NumReduceDim>> NumReduceDim>>
...@@ -57,8 +58,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal ...@@ -57,8 +58,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
using DeviceOp = DeviceNormalization<XDataType, using DeviceOp = DeviceNormalization<XDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
F32,
YDataType, YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
Rank, Rank,
NumReduceDim>; NumReduceDim>;
...@@ -68,7 +69,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal ...@@ -68,7 +69,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
std::vector<std::unique_ptr<DeviceOp>> op_ptrs; std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> && if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>) is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{ {
if constexpr(Rank == 2 && NumReduceDim == 1) if constexpr(Rank == 2 && NumReduceDim == 1)
{ {
...@@ -86,7 +88,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal ...@@ -86,7 +88,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> && if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>) is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{ {
if constexpr(Rank == 2 && NumReduceDim == 1) if constexpr(Rank == 2 && NumReduceDim == 1)
{ {
......
...@@ -19,7 +19,7 @@ namespace instance { ...@@ -19,7 +19,7 @@ namespace instance {
// FP16 // FP16
void add_device_normalization_rank_5_3_swish_f16_instances( void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&); std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>&);
// FP32 // FP32
void add_device_normalization_rank_5_3_swish_f32_instances( void add_device_normalization_rank_5_3_swish_f32_instances(
...@@ -27,20 +27,21 @@ void add_device_normalization_rank_5_3_swish_f32_instances( ...@@ -27,20 +27,21 @@ void add_device_normalization_rank_5_3_swish_f32_instances(
// [x, gamma, beta, y] = [f16, f32, f32, f16] // [x, gamma, beta, y] = [f16, f32, f32, f16]
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances( void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&); std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>&);
template <typename XDataType, template <typename XDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename YDataType, typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank, index_t Rank,
index_t NumReduceDim> index_t NumReduceDim>
struct DeviceOperationInstanceFactory< struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalization<XDataType, ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
F32,
YDataType, YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish, ck::tensor_operation::element_wise::Swish,
Rank, Rank,
NumReduceDim>> NumReduceDim>>
...@@ -48,8 +49,8 @@ struct DeviceOperationInstanceFactory< ...@@ -48,8 +49,8 @@ struct DeviceOperationInstanceFactory<
using DeviceOp = DeviceNormalization<XDataType, using DeviceOp = DeviceNormalization<XDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
F32,
YDataType, YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish, ck::tensor_operation::element_wise::Swish,
Rank, Rank,
NumReduceDim>; NumReduceDim>;
...@@ -59,7 +60,8 @@ struct DeviceOperationInstanceFactory< ...@@ -59,7 +60,8 @@ struct DeviceOperationInstanceFactory<
std::vector<std::unique_ptr<DeviceOp>> op_ptrs; std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> && if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>) is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{ {
if constexpr(Rank == 5 && NumReduceDim == 3) if constexpr(Rank == 5 && NumReduceDim == 3)
{ {
...@@ -67,7 +69,8 @@ struct DeviceOperationInstanceFactory< ...@@ -67,7 +69,8 @@ struct DeviceOperationInstanceFactory<
} }
} }
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> && else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>) is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{ {
if constexpr(Rank == 5 && NumReduceDim == 3) if constexpr(Rank == 5 && NumReduceDim == 3)
{ {
...@@ -75,7 +78,8 @@ struct DeviceOperationInstanceFactory< ...@@ -75,7 +78,8 @@ struct DeviceOperationInstanceFactory<
} }
} }
else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> && else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16>) is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{ {
if constexpr(Rank == 5 && NumReduceDim == 3) if constexpr(Rank == 5 && NumReduceDim == 3)
{ {
......
...@@ -230,7 +230,6 @@ check_err(const Range& out, ...@@ -230,7 +230,6 @@ check_err(const Range& out,
return res; return res;
} }
#if defined CK_ENABLE_FP8
template <typename Range, typename RefRange> template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> && std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, f8_t>), std::is_same_v<ranges::range_value_t<Range>, f8_t>),
...@@ -275,9 +274,7 @@ check_err(const Range& out, ...@@ -275,9 +274,7 @@ check_err(const Range& out,
} }
return res; return res;
} }
#endif
#if defined CK_ENABLE_BF8
template <typename Range, typename RefRange> template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> && std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, bf8_t>), std::is_same_v<ranges::range_value_t<Range>, bf8_t>),
...@@ -322,7 +319,6 @@ check_err(const Range& out, ...@@ -322,7 +319,6 @@ check_err(const Range& out,
} }
return res; return res;
} }
#endif
} // namespace utils } // namespace utils
} // namespace ck } // namespace ck
...@@ -22,7 +22,7 @@ static inline void dumpBufferToFile(const char* fileName, T* data, size_t dataNu ...@@ -22,7 +22,7 @@ static inline void dumpBufferToFile(const char* fileName, T* data, size_t dataNu
std::ofstream outFile(fileName, std::ios::binary); std::ofstream outFile(fileName, std::ios::binary);
if(outFile) if(outFile)
{ {
outFile.write(reinterpret_cast<char*>(data), dataNumItems * sizeof(T)); outFile.write(reinterpret_cast<const char*>(data), dataNumItems * sizeof(T));
outFile.close(); outFile.close();
std::cout << "Write output to file " << fileName << std::endl; std::cout << "Write output to file " << fileName << std::endl;
} }
......
...@@ -200,10 +200,11 @@ struct GeneratorTensor_3<ck::bf8_t> ...@@ -200,10 +200,11 @@ struct GeneratorTensor_3<ck::bf8_t>
template <typename T> template <typename T>
struct GeneratorTensor_4 struct GeneratorTensor_4
{ {
std::default_random_engine generator; std::mt19937 generator;
std::normal_distribution<float> distribution; std::normal_distribution<float> distribution;
GeneratorTensor_4(float mean, float stddev) : generator(1), distribution(mean, stddev){}; GeneratorTensor_4(float mean, float stddev, unsigned int seed = 1)
: generator(seed), distribution(mean, stddev){};
template <typename... Is> template <typename... Is>
T operator()(Is...) T operator()(Is...)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment