"projects/vscode:/vscode.git/clone" did not exist on "1f0aeba1dc3647c0d533afa70aa3a4191d87bca3"
Commit ddefb951 authored by Astha Rai's avatar Astha Rai
Browse files

updated example with 1d kernel

parent 4a20c076
......@@ -24,11 +24,11 @@ using DeviceElementwisePermuteInstance =
PassThrough, // ElementwiseOp
5, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nchwd, const HostTensorA& A_ncdhw, Functor functor)
void host_elementwise4D(HostTensorB& B_ndhwc, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
......@@ -37,7 +37,7 @@ void host_elementwise4D(HostTensorB& B_nchwd, const HostTensorA& A_ncdhw, Functo
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_nchwd(n, c, h, w, d), a_val);
functor(B_ndhwc(n, d, h, w, c), a_val);
}
}
......@@ -47,9 +47,9 @@ int main()
bool time_kernel = true;
std::vector<std::size_t> ncdhw = {16, 8, 8, 8, 8};
std::vector<std::size_t> nchwd = {16, 8, 8, 8, 8};
std::vector<std::size_t> ndhwc = {16, 8, 8, 8, 8};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(nchwd);
Tensor<BDataType> b(ndhwc);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
......@@ -62,19 +62,32 @@ int main()
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths;
std::array<ck::index_t, 5> a_strides = {
/**std::array<ck::index_t, 5> a_strides = {
static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[4]),
1};
std::array<ck::index_t, 5> b_strides = {
static_cast<int>(nchwd[1] * nchwd[2] * nchwd[3] * nchwd[4]),
static_cast<int>(nchwd[2] * nchwd[3] * nchwd[4]),
static_cast<int>(ndhwc[1] * ndhwc[2] * ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[2] * ndhwc[3] * ndhwc[4]),
1,
static_cast<int>(nchwd[3] * nchwd[4]),
static_cast<int>(nchwd[4])};
static_cast<int>(ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[4])};**/
std::array<ck::index_t, 5> a_strides = {
static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[4]),
1,
static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4])};
std::array<ck::index_t, 5> b_strides = {
static_cast<int>(ndhwc[1] * ndhwc[2] * ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[2] * ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[4]),
1};
ck::ranges::copy(ncdhw, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
......@@ -88,7 +101,7 @@ int main()
};
std::cout << "A (ncdhw): " << a.mDesc << std::endl;
std::cout << "B (nchwd): " << b.mDesc << std::endl;
std::cout << "B (ndhwc): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
......@@ -111,7 +124,7 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nchwd);
Tensor<BDataType> host_b(ndhwc);
host_elementwise4D(host_b, a, PassThrough{});
pass &=
......
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwise3dImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
2, // NumDim_m, {N, C}
2, // NumDim_n, {H, W}
1, // NumDim_k, {D}
8, // MPerThread
8, // NPerThread
8, // KPerThread
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nchwd, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_nchwd(n, c, h, w, d), a_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
/**const int N = 4;
const int C = 16;
const int H = 32;
const int W = 5;
const int D = 16;**/
ck::index_t N = 4;
ck::index_t C = 16;
ck::index_t H = 32;
ck::index_t W = 5;
ck::index_t D = 16;
std::vector<ck::index_t> ncdhw = {N, C, D, H, W};
std::vector<ck::index_t> nchwd = {N, C, H, W, D};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(nchwd);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, D * H * W, W, 1, H * W}; // N, C, D, H, W
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, C, H, W, D
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A (ncdhw): " << a.mDesc << std::endl;
std::cout << "B (nchwd): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];
std::size_t num_btype =
sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nchwd);
host_elementwise4D(host_b, a, PassThrough{});
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment