Unverified Commit dc70e3e1 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents 10947a54 8ee36118
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
void add_gemm_f16_tt_256x256(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_f16_tt_256x128(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_f16_tt_128x128(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_f16_tt_128x64(std::vector<std::unique_ptr<BaseOperator>>& instances);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run_gemm_test()
{
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
auto test = [&](auto a_layout, auto b_layout, auto c_layout) {
bool pass = true;
using DeviceOp = ck::tensor_operation::device::DeviceGemm<decltype(a_layout),
decltype(b_layout),
decltype(c_layout),
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>;
const auto gemmPtrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
for(auto& gemmPtr : gemmPtrs)
{
pass &= ck::gemm_util::TestGemm<AccDataType>{}(gemmPtr.get());
}
return pass;
};
bool pass = test(Row{}, Row{}, Row{}) && test(Row{}, Col{}, Row{}) &&
test(Col{}, Row{}, Row{}) && test(Col{}, Col{}, Row{});
std::cout << "TestGemm ..... " << (pass ? "SUCCESS" : "FAILURE") << std::endl;
return pass ? 0 : 1;
}
......@@ -45,13 +45,6 @@ class TestGroupnorm : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>>;
TYPED_TEST_SUITE(TestGroupnorm, KernelTypes);
......
......@@ -43,13 +43,6 @@ class TestGroupnorm : public ::testing::Test
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>,
std::tuple<F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestGroupnorm, KernelTypes);
......
......@@ -12,28 +12,91 @@
using namespace ck;
void traverse_using_space_filling_curve();
void traverse_using_space_filling_curve_linear();
void traverse_using_space_filling_curve_snakecurved();
int main(int argc, char** argv)
{
(void)argc;
(void)argv;
traverse_using_space_filling_curve();
traverse_using_space_filling_curve_linear();
traverse_using_space_filling_curve_snakecurved();
return 0;
}
void traverse_using_space_filling_curve()
void traverse_using_space_filling_curve_linear()
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
using TensorLengths = Sequence<16, 10, 9>;
using DimAccessOrder = Sequence<2, 0, 1>;
using ScalarsPerAccess = Sequence<4, 2, 3>;
using SpaceFillingCurve = SpaceFillingCurve<TensorLengths, DimAccessOrder, ScalarsPerAccess>;
using TensorLengths = Sequence<3, 2, 2>;
using DimAccessOrder = Sequence<2, 0, 1>;
using ScalarsPerAccess = Sequence<1, 1, 1>;
using SpaceFillingCurve =
SpaceFillingCurve<TensorLengths, DimAccessOrder, ScalarsPerAccess, false>;
constexpr auto expected = make_tuple(make_tuple(0, 0, 0),
make_tuple(0, 1, 0),
make_tuple(1, 0, 0),
make_tuple(1, 1, 0),
make_tuple(2, 0, 0),
make_tuple(2, 1, 0),
make_tuple(0, 0, 1),
make_tuple(0, 1, 1),
make_tuple(1, 0, 1),
make_tuple(1, 1, 1),
make_tuple(2, 0, 1),
make_tuple(2, 1, 1));
constexpr index_t num_access = SpaceFillingCurve::GetNumOfAccess();
static_assert(num_access == reduce_on_sequence(TensorLengths{} / ScalarsPerAccess{},
math::multiplies{},
Number<1>{}));
static_for<1, num_access, 1>{}([&](auto i) {
constexpr auto idx_curr = SpaceFillingCurve::GetIndex(i);
static_assert(idx_curr[I0] == expected[i][I0]);
static_assert(idx_curr[I1] == expected[i][I1]);
static_assert(idx_curr[I2] == expected[i][I2]);
constexpr auto backward_step = SpaceFillingCurve::GetBackwardStep(i);
constexpr auto expected_step = expected[i - I1] - expected[i];
static_assert(backward_step[I0] == expected_step[I0]);
static_assert(backward_step[I1] == expected_step[I1]);
static_assert(backward_step[I2] == expected_step[I2]);
});
static_for<0, num_access - 1, 1>{}([&](auto i) {
constexpr auto idx_curr = SpaceFillingCurve::GetIndex(i);
static_assert(idx_curr[I0] == expected[i][I0]);
static_assert(idx_curr[I1] == expected[i][I1]);
static_assert(idx_curr[I2] == expected[i][I2]);
constexpr auto forward_step = SpaceFillingCurve::GetForwardStep(i);
constexpr auto expected_step = expected[i + I1] - expected[i];
static_assert(forward_step[I0] == expected_step[I0]);
static_assert(forward_step[I1] == expected_step[I1]);
static_assert(forward_step[I2] == expected_step[I2]);
});
}
void traverse_using_space_filling_curve_snakecurved()
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
using TensorLengths = Sequence<16, 10, 9>;
using DimAccessOrder = Sequence<2, 0, 1>;
using ScalarsPerAccess = Sequence<4, 2, 3>;
using SpaceFillingCurve =
SpaceFillingCurve<TensorLengths, DimAccessOrder, ScalarsPerAccess, true>;
constexpr auto expected = make_tuple(make_tuple(0, 0, 0),
make_tuple(0, 2, 0),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment