Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
dc70e3e1
Unverified
Commit
dc70e3e1
authored
Nov 01, 2022
by
arai713
Committed by
GitHub
Nov 01, 2022
Browse files
Merge branch 'develop' into gridwise_2d
parents
10947a54
8ee36118
Changes
105
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
885 additions
and
309 deletions
+885
-309
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance.cpp
+3
-3
library/src/tensor_operation_instance/gpu/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
...ed_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
+0
-4
library/src/tensor_operation_instance/gpu/batched_gemm_masking_scale_softmax_gemm_permute/device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+0
-85
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+57
-23
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute/CMakeLists.txt
...ance/gpu/batched_gemm_softmax_gemm_permute/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+133
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
..._grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
+101
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
..._grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
+102
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
...grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
+102
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
+1
-1
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
+17
-7
profiler/include/profile_batched_gemm_softmax_gemm_permute_impl.hpp
...nclude/profile_batched_gemm_softmax_gemm_permute_impl.hpp
+125
-138
profiler/include/profile_grouped_conv_fwd_impl.hpp
profiler/include/profile_grouped_conv_fwd_impl.hpp
+92
-42
test/CMakeLists.txt
test/CMakeLists.txt
+1
-1
test/batched_gemm/CMakeLists.txt
test/batched_gemm/CMakeLists.txt
+11
-0
test/batched_gemm/batched_gemm_bf16.cpp
test/batched_gemm/batched_gemm_bf16.cpp
+44
-0
test/batched_gemm/batched_gemm_fp32.cpp
test/batched_gemm/batched_gemm_fp32.cpp
+44
-0
test/batched_gemm/batched_gemm_int8.cpp
test/batched_gemm/batched_gemm_int8.cpp
+44
-0
test/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
...ed_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
+0
-5
No files found.
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_instance.cpp
View file @
dc70e3e1
...
...
@@ -36,10 +36,10 @@ using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gon_gmo_inst
//################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
//
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Col, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 4, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 2, S<1, 32, 1, 8>, 8>,
// TODO: to enable; can trigger compiler crash in mainline #9110 but not in #10738
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
64
,
32
,
8
,
8
,
4
,
32
,
32
,
2
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
4
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
//
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Col, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 4, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 2, S<1, 32, 1, 8>, 8>,
// TODO: to enable; can cause validation error on MI100
//
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Col, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 4, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 2, S<1, 32, 1, 8>, 8>,
// TODO: to enable; can cause validation error on MI100
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
64
,
32
,
8
,
8
,
4
,
32
,
32
,
1
,
8
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
128
,
32
,
8
,
8
,
4
,
32
,
32
,
1
,
8
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
4
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
4
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
4
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
deleted
100644 → 0
View file @
10947a54
add_instance_library
(
device_batched_gemm_masking_scale_softmax_gemm_permute_instance
device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
library/src/tensor_operation_instance/gpu/batched_gemm_masking_scale_softmax_gemm_permute/device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
deleted
100644 → 0
View file @
10947a54
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
CPermuteNumDims_G_M_O
=
S
<
2
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmPadded
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
using
device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
// 2 of them are commented out because they trigger the clang-13 issue.
//##############################################| ALayout| B0Layout| B1Layout| CPermuteNumDims_G_M_O| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskOut|
//##############################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Upper|
//##############################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Triangle|
//##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
//DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
//DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
true
>
// clang-format on
>
;
void
add_device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
,
F16
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
View file @
dc70e3e1
...
...
@@ -24,11 +24,13 @@ template <ck::index_t... Is>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmPadded
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
template
<
bool
Masking
>
using
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
...
...
@@ -36,24 +38,25 @@ using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_
//#######################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Upper|
//#######################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Triangle|
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
// clang-format on
>
;
template
<
bool
Masking
>
using
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances
=
std
::
tuple
<
// clang-format off
...
...
@@ -61,12 +64,14 @@ using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_
//#######################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Upper|
//#######################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Triangle|
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
256
,
128
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
256
,
128
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
256
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
256
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
8
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
false
>
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
256
,
128
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
256
,
128
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
#if CK_WORKAROUND_DISABLE_BROKEN_ATTN_KERNEL_INSTANCE == 0
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
256
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
#endif
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
256
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
8
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
40
,
64
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
1
,
256
,
128
,
128
,
40
,
128
,
32
,
4
,
4
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
Masking
>
// clang-format on
>
;
...
...
@@ -81,16 +86,45 @@ void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_g
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
false
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
{});
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
<
false
>
{});
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances
{});
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances
<
false
>
{});
}
void
add_device_batched_gemm_masking_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemm
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
true
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
<
true
>
{});
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances
<
true
>
{});
}
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute/CMakeLists.txt
0 → 100644
View file @
dc70e3e1
add_instance_library
(
device_batched_gemm_softmax_gemm_permute_instance
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmPadded
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
TensorDefault
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
MaskingSpecialization
MaskingSpec
>
using
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
// #############################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| AData| B0Data| B1Data| CData| Acc0BiasData| Acc1BiasData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskingSpec|
// #############################################| | | | | | Type| Type| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
// #############################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
// #############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
256
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
8
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
GemmPadded
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
TensorDefault
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
MaskingSpec
>
// clang-format on
>
;
void
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
MaskingSpecialization
::
MaskOutUpperTriangle
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
<
2
,
1
,
1
,
1
,
1
,
MaskingSpecialization
::
MaskOutUpperTriangle
>
{});
}
void
add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
PassThrough
,
PassThrough
,
Scale
,
PassThrough
,
PassThrough
,
MaskingSpecialization
::
MaskDisabled
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
<
2
,
1
,
1
,
1
,
1
,
MaskingSpecialization
::
MaskDisabled
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
View file @
dc70e3e1
...
...
@@ -6,4 +6,8 @@ add_instance_library(device_grouped_conv2d_fwd_instance
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
# NHWGC, GKYXC, NHWGK
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
#dl
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
)
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
Filter1x1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
Filter1x1Stride1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
GemmPadingSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Stride1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Stride1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwd
<
2
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Pad0_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Stride1Pad0_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
AccDataType
=
float
;
using
OutDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
Filter1x1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
Filter1x1Stride1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
GemmPadingSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Stride1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Stride1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwd
<
2
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Pad0_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Stride1Pad0_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
Filter1x1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
Filter1x1Stride1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
GemmPadingSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_Filter1x1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
using
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_Filter1x1Stride1Pad0_instances
=
std
::
tuple
<
// clang-format off
// ###############################| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###############################| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###############################| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
Filter1x1Stride1Pad0
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwd
<
2
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_Filter1x1Pad0_instances
{});
add_device_operation_instances
(
instances
,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_Filter1x1Stride1Pad0_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
View file @
dc70e3e1
add_library
(
device_grouped_conv3d_fwd_instance
add_
instance_
library
(
device_grouped_conv3d_fwd_instance
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
...
...
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
View file @
dc70e3e1
...
...
@@ -29,7 +29,8 @@ template <typename ADataType,
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
>
typename
CLayout
,
bool
MaskOutUpperTriangle
>
bool
profile_batched_gemm_softmax_gemm_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
...
...
@@ -46,16 +47,18 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
int
BatchStrideA
=
-
1
,
int
BatchStrideB0
=
-
1
,
int
BatchStrideB1
=
-
1
,
int
BatchStrideC
=
-
1
)
int
BatchStrideC
=
-
1
,
float
alpha
=
1.
f
)
{
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
AccDataType
=
float
;
...
...
@@ -67,7 +70,7 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
AccDataType
,
AElementOp
,
B0ElementOp
,
C
ElementOp
>
;
Acc0
ElementOp
>
;
// Ref Softmax: fp32 in, various type out
using
ReferenceSoftmaxInstance
=
...
...
@@ -185,7 +188,7 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
...
...
@@ -201,7 +204,8 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
>
;
CElementOp
,
MaskOutUpperTriangle
>
;
// get device op instances
const
auto
op_ptrs
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
@@ -214,10 +218,16 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{
});
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
Scale
{
alpha
});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// mask out upper triangle
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
MaskOutUpperTriangle
&&
idx
[
1
]
<
idx
[
2
])
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
...
...
profiler/include/profile_batched_gemm_
masking_scale_
softmax_gemm_permute_impl.hpp
→
profiler/include/profile_batched_gemm_softmax_gemm_permute_impl.hpp
View file @
dc70e3e1
...
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_batched_gemm_softmax_gemm_permute
_xdl_cshuffle
.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_
masking_scale_
softmax_gemm_permute.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -22,36 +22,32 @@
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CPermuteNumDims_G_M_O
>
bool
profile_batched_gemm_masking_scale_softmax_gemm_permute_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
O
,
int
G0
,
int
G1
,
int
StrideA
=
-
1
,
int
StrideB0
=
-
1
,
int
StrideB1
=
-
1
,
int
BatchStrideA
=
-
1
,
int
BatchStrideB0
=
-
1
,
int
BatchStrideB1
=
-
1
,
float
alpha
=
1.
f
)
typename
Acc0BiasesDataType
,
typename
Acc1BiasesDataType
,
tensor_operation
::
device
::
MaskingSpecialization
MaskingSpec
>
bool
profile_batched_gemm_softmax_gemm_permute_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
O
,
int
G0
,
int
G1
,
float
alpha
=
1.
f
)
{
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
...
...
@@ -60,6 +56,7 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
AccDataType
=
float
;
using
tensor_operation
::
device
::
MaskingSpecialization
;
// Ref Gemm0: various type in, fp32 out
using
ReferenceGemm0Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
...
...
@@ -85,67 +82,33 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
bool
pass
=
true
;
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
}
;
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
}
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
}
;
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
}
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
}
;
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
;
const
int
BatchCount
=
G0
*
G1
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
int
>
{
BatchCount
,
M
,
O
},
std
::
vector
<
int
>
{
M
*
O
,
O
,
1
});
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
std
::
srand
(
1
);
// work around test flakiness
...
...
@@ -157,38 +120,38 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
// or not. May want to try exact same approach as the GPU kernel in the host reference
// GEMM+Softmax+GEMM function to see if the accuracy discrepancy goes away. Until then,
// shrink the input value range as it is less likely to produce errors of around ~1e-3.
// a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
// b0_g
_k_n
.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
// b1_g
_n_o
.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g
_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_g
_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
// a_g
s
_m
s
_k
s
.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
// b0_g
s_ns_ks
.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
// b1_g
s_os_ns
.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
a_g
s
_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g
s_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_g
s_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g
_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g
_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
a_g
s
_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g
s_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g
s_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g
_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g
_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
a_g
s
_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g
s_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g
s_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g
_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g
_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
a_g
s
_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g
s_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g
s_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_
g_m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSize
());
DeviceMem
b0_
g_k_n_
device_buf
(
sizeof
(
B0DataType
)
*
b0_g
_k_n
.
mDesc
.
GetElementSize
());
DeviceMem
b1_
g_n_o_
device_buf
(
sizeof
(
B1DataType
)
*
b1_g
_n_o
.
mDesc
.
GetElementSize
());
DeviceMem
c_
gs_ms_os_
device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g
s
_m
s
_k
s
.
mDesc
.
GetElementS
paceS
ize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_g
s_ns_ks
.
mDesc
.
GetElementS
paceS
ize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_g
s_os_ns
.
mDesc
.
GetElementS
paceS
ize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
a_
g_m_k_
device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_
g_k_n_
device_buf
.
ToDevice
(
b0_g
_k_n
.
mData
.
data
());
b1_
g_n_o_
device_buf
.
ToDevice
(
b1_g
_n_o
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_g
s
_m
s
_k
s
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_g
s_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_g
s_os_ns
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
...
...
@@ -196,20 +159,23 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
using
DeviceOp
=
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
ALayout
,
B0Layout
,
B1Layout
,
CPermuteNumDims_G_M_O
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
>
;
using
DeviceOp
=
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
MaskingSpec
>
;
// get device op instances
const
auto
op_ptrs
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
@@ -219,6 +185,26 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
acc0_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
({
BatchCount
,
M
,
O
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
...
...
@@ -228,7 +214,7 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
// mask out upper triangle
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
idx
[
1
]
<
idx
[
2
])
if
(
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
&&
idx
[
1
]
<
idx
[
2
])
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
...
...
@@ -265,23 +251,24 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_gs_ms_os_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
StrideA
,
StrideB0
,
StrideB1
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op
,
b0_element_op
,
acc0_element_op
,
...
...
@@ -319,18 +306,18 @@ bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verifi
if
(
do_verification
)
{
c_
gs_ms_os_
device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a_g_m_k: "
,
a_g_m_k
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a_g
s
_m
s
_k
s
: "
,
a_g
s
_m
s
_k
s
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b0_g
_k_n
: "
,
b0_g
_k_n
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b0_g
s_ns_ks
: "
,
b0_g
s_ns_ks
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b1_g
_n_o
: "
,
b1_g
_n_o
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b1_g
s_os_ns
: "
,
b1_g
s_os_ns
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_gs_ms_os_host_result : "
,
c_gs_ms_os_host_result
.
mData
,
","
)
...
...
profiler/include/profile_grouped_conv_fwd_impl.hpp
View file @
dc70e3e1
...
...
@@ -14,6 +14,9 @@
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_dl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
...
@@ -136,25 +139,6 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
...
...
@@ -163,29 +147,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
// profile device op instances
bool
pass
=
true
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
...
...
@@ -237,6 +199,94 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
// xdl
{
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"xdl found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
}
// dl
{
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwd
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"dl found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
}
std
::
cout
<<
"Best configuration parameters:"
...
...
test/CMakeLists.txt
View file @
dc70e3e1
...
...
@@ -41,7 +41,7 @@ add_subdirectory(batched_gemm)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_
masking_scale_
softmax_gemm_permute
)
add_subdirectory
(
batched_gemm_softmax_gemm_permute
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
reduce
)
add_subdirectory
(
convnd_fwd
)
...
...
test/batched_gemm/CMakeLists.txt
View file @
dc70e3e1
...
...
@@ -2,3 +2,14 @@ add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_fp32 batched_gemm_fp32.cpp
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_bf16 batched_gemm_bf16.cpp
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_int8 batched_gemm_int8.cpp
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE device_batched_gemm_instance
)
test/batched_gemm/batched_gemm_bf16.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM bf16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_fp32.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp32: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_int8.cpp
0 → 100644
View file @
dc70e3e1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM int8: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
deleted
100644 → 0
View file @
10947a54
add_custom_target
(
test_batched_gemm_masking_scale_softmax_gemm_permute
)
add_gtest_executable
(
test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 test_batched_gemm_masking_scale_softmax_gemm_permute_fp16.cpp
)
target_link_libraries
(
test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_masking_scale_softmax_gemm_permute_instance
)
add_dependencies
(
test_batched_gemm_masking_scale_softmax_gemm_permute test_batched_gemm_masking_scale_softmax_gemm_permute_fp16
)
\ No newline at end of file
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment