Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
dc0bae32
Commit
dc0bae32
authored
Feb 01, 2023
by
Adam Osewski
Browse files
Merge branch 'develop' into aosewski/wavelet_omniperf
parents
68474822
ba40c2ce
Changes
474
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2761 additions
and
50 deletions
+2761
-50
include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_xdl.hpp
...pu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_xdl.hpp
+2
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp
..._operation/gpu/device/impl/device_elementwise_2d_impl.hpp
+341
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp
...sor_operation/gpu/device/impl/device_elementwise_impl.hpp
+3
-3
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
...gpu/device/impl/device_elementwise_normalization_impl.hpp
+4
-4
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
...de/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
+2
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
...r_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
+669
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
...ce/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
+1072
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
...ation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
+3
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
.../ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+571
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
...e/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
+9
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
...or_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
+13
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
...on/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
..._operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
+2
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+5
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+14
-1
include/ck/tensor_operation/gpu/device/impl/device_multiple_reduce_multiblock.hpp
...ion/gpu/device/impl/device_multiple_reduce_multiblock.hpp
+8
-8
include/ck/tensor_operation/gpu/device/impl/device_multiple_reduce_threadwise.hpp
...ion/gpu/device/impl/device_multiple_reduce_threadwise.hpp
+6
-6
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
...r_operation/gpu/device/impl/device_normalization_impl.hpp
+5
-4
include/ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp
...or_operation/gpu/device/impl/device_reduce_multiblock.hpp
+16
-8
include/ck/tensor_operation/gpu/device/impl/device_reduce_threadwise.hpp
...or_operation/gpu/device/impl/device_reduce_threadwise.hpp
+15
-6
No files found.
include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_xdl.hpp
View file @
dc0bae32
...
...
@@ -1274,6 +1274,7 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Xdl
float
ave_time
=
0
;
for
(
size_t
i
=
0
;
i
<
arg
.
a_grid_desc_k0_m_k1_container_
.
size
();
i
++
)
{
#if DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_k0_m_k1_container_{"
<<
arg
.
a_grid_desc_k0_m_k1_container_
[
i
].
GetLength
(
I0
)
<<
", "
...
...
@@ -1310,6 +1311,7 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Xdl
<<
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_
[
i
].
GetLength
(
I7
)
<<
" ) "
<<
std
::
endl
;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_container_
[
i
],
arg
.
b_grid_desc_k0_n_k1_container_
[
i
],
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp
0 → 100644
View file @
dc0bae32
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim_m
,
index_t
NumDim_n
,
index_t
MPerThread
,
index_t
NPerThread
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwise2dImpl
:
public
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim_m
+
NumDim_n
>
{
static
constexpr
index_t
NumDim
=
NumDim_m
+
NumDim_n
;
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static_assert
(
NumInput
==
InScalarPerVectorSeq
::
Size
()
&&
NumOutput
==
OutScalarPerVectorSeq
::
Size
(),
"Tuple size is inconsistent with the number of in/out!"
);
static
auto
GenerateInDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
nullptr
);
},
Number
<
NumInput
>
{});
};
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumOutput
>
{});
};
using
InDataTypePointerTuple
=
decltype
(
GenerateInDataTypePointerTuple
());
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
template
<
typename
Desc_MN
>
static
auto
PadDescriptor_MN_2d
(
Desc_MN
desc_mn
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
std
::
ignore
=
blockSize
;
std
::
ignore
=
gridSize
;
const
auto
m
=
desc_mn
.
GetLength
(
I0
);
const
auto
n
=
desc_mn
.
GetLength
(
I1
);
const
index_t
loop_step_m
=
num_threads_m
*
MPerThread
;
const
index_t
loop_step_n
=
num_threads_n
*
NPerThread
;
const
auto
pad_m
=
math
::
integer_least_multiple
(
m
,
loop_step_m
)
-
m
;
const
auto
pad_n
=
math
::
integer_least_multiple
(
n
,
loop_step_n
)
-
n
;
const
auto
desc_mn_pad
=
transform_tensor_descriptor
(
desc_mn
,
make_tuple
(
make_right_pad_transform
(
m
,
pad_m
),
make_right_pad_transform
(
n
,
pad_n
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
desc_mn_pad
;
}
static
auto
MakeDescriptor_MN
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NumDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NumDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDim_m
,
1
>::
type
();
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDim_m
,
NumDim_m
+
NumDim_n
,
1
>::
type
();
const
auto
mLengths
=
get_container_subset
(
tupleOfShape
,
mDimIds
);
const
auto
nLengths
=
get_container_subset
(
tupleOfShape
,
nDimIds
);
// merge nd to 2d desc - [s0 * s1 * ...]
if
constexpr
(
NumDim
>
2
)
{
const
auto
desc_mn
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
PadDescriptor_MN_2d
(
desc_mn
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
else
return
PadDescriptor_MN_2d
(
desc
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
template
<
index_t
TupleSize
>
static
auto
GenerateInOutGrid2dDescTuple
(
Number
<
TupleSize
>
)
{
return
generate_tuple
(
[
&
](
auto
)
{
if
constexpr
(
NumDim
>
2
)
{
return
MakeDescriptor_MN
({
1
,
1
},
{
1
,
1
},
1
,
1
,
1
,
1
);
}
else
{
return
MakeDescriptor_MN
({
1
},
{
1
},
1
,
1
,
1
,
1
);
};
},
Number
<
TupleSize
>
{});
};
using
OutGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumOutput
>
{}));
using
InGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumInput
>
{}));
using
GridwiseElementwise
=
GridwiseElementwise_2D
<
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
,
MPerThread
,
NPerThread
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
:
lengths_
(
lengths
),
inStridesArray_
(
inStridesArray
),
outStridesArray_
(
outStridesArray
),
elementwise_op_
(
elementwise_op
),
blockSize_
(
256
),
gridSize_
(
120
),
// FIXME - Calculate the grid size by number of CU in the future
num_threads_m_
((
gridSize_
*
blockSize_
)
/
16
),
num_threads_n_
(
16
)
{
static_assert
(
NumDim_m
>
0
,
""
);
static_assert
(
NumDim_n
>
0
,
""
);
in_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
in_dev_buffers
[
I
.
value
]);
},
Number
<
NumInput
>
{});
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
out_dev_buffers
[
I
.
value
]);
},
Number
<
NumOutput
>
{});
in_grid_2d_desc_tuple_
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
lengths
,
inStridesArray
[
I
.
value
],
gridSize_
,
blockSize_
,
num_threads_m_
,
num_threads_n_
);
},
Number
<
NumInput
>
{});
out_grid_2d_desc_tuple_
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
lengths
,
outStridesArray
[
I
.
value
],
gridSize_
,
blockSize_
,
num_threads_m_
,
num_threads_n_
);
},
Number
<
NumOutput
>
{});
}
InDataTypePointerTuple
in_dev_buffers_
;
OutDataTypePointerTuple
out_dev_buffers_
;
InGrid2dDescTuple
in_grid_2d_desc_tuple_
;
OutGrid2dDescTuple
out_grid_2d_desc_tuple_
;
std
::
array
<
index_t
,
NumDim
>
lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
index_t
gridSize_
;
index_t
num_threads_m_
;
index_t
num_threads_n_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel
=
kernel_elementwise_2d
<
GridwiseElementwise
,
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize_
),
dim3
(
arg
.
blockSize_
),
0
,
arg
.
in_grid_2d_desc_tuple_
,
arg
.
out_grid_2d_desc_tuple_
,
arg
.
in_dev_buffers_
,
arg
.
out_dev_buffers_
,
arg
.
elementwise_op_
,
arg
.
num_threads_m_
,
arg
.
num_threads_n_
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
strides
,
index_t
scalarPerVector
,
index_t
vectorDim
)
{
if
(
strides
[
vectorDim
]
==
1
&&
(
lengths
[
vectorDim
]
%
scalarPerVector
==
0
||
lengths
[
vectorDim
]
%
scalarPerVector
==
lengths
[
vectorDim
]))
{
return
true
;
}
if
(
strides
[
vectorDim
]
!=
1
&&
scalarPerVector
==
strides
[
vectorDim
])
{
return
true
;
}
return
false
;
};
bool
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
),
NumDim_m
-
1
))
valid
=
false
;
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
),
NumDim
-
1
))
valid
=
false
;
});
return
valid
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
lengths
,
inStridesArray
,
outStridesArray
,
in_dev_buffers
,
out_dev_buffers
,
elementwise_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_elementwise.hpp
→
include/ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp
View file @
dc0bae32
...
...
@@ -8,7 +8,7 @@
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise
_base
.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
...
...
@@ -25,8 +25,8 @@ template <typename InDataTypeTuple,
index_t
MPerThread
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwise
:
public
DeviceElementwise
Base
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim
>
struct
DeviceElementwise
Impl
:
public
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim
>
{
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
View file @
dc0bae32
...
...
@@ -270,18 +270,18 @@ struct DeviceElementwiseNormalizationImpl
const
std
::
vector
<
index_t
>
reduceDims
,
XElementwiseOperation
x_elementwise_op
,
YElementwiseOperation
y_elementwise_op
,
AccDataTyp
e
epsilon
,
doubl
e
epsilon
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
GammaDataType
*
p_gamma
,
const
BetaDataType
*
p_beta
,
YDataType
*
p_y
)
:
epsilon_
(
epsilon
),
p_gamma_
(
p_gamma
),
:
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
x_elementwise_op_
(
x_elementwise_op
),
y_elementwise_op_
(
y_elementwise_op
)
{
epsilon_
=
static_cast
<
AccDataType
>
(
epsilon
);
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
for
(
int
i
=
0
;
i
<
NumInput
;
i
++
)
...
...
@@ -543,7 +543,7 @@ struct DeviceElementwiseNormalizationImpl
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataTyp
e
epsilon
,
doubl
e
epsilon
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
View file @
dc0bae32
...
...
@@ -327,6 +327,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_k0_m0_m1_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
...
...
@@ -341,6 +342,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
))
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
0 → 100644
View file @
dc0bae32
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_K0_M0_M1_K1
,
typename
BGridDesc_K0_N0_N1_K1
,
typename
DsGridDesc_M0_M10_M11_N0_N10_N11
,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_dl_multiple_d
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1
,
const
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1
,
const
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx1030__))
constexpr
index_t
shared_block_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
ABDataType
);
__shared__
ABDataType
p_shared
[
shared_block_size
];
GridwiseGemm
::
Run
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m0_m1_k1
,
b_grid_desc_k0_n0_n1_k1
,
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
e_grid_desc_m0_m10_m11_n0_n10_n11
,
block_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_k0_m0_m1_k1
;
ignore
=
b_grid_desc_k0_n0_n1_k1
;
ignore
=
ds_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
e_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
block_2_ctile_map
;
#endif
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
K1
,
index_t
M1PerThread
,
index_t
N1PerThread
,
index_t
KPerThread
,
typename
M1N1ThreadClusterM1Xs
,
typename
M1N1ThreadClusterN1Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
,
enable_if_t
<
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
&&
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
,
bool
>
=
false
>
struct
DeviceGemmMultipleD_Dl
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemmMultipleD_Dl
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideE
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideE
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmDlMultipleD_km_kn_mn
<
BlockSize
,
ADataType
,
AccDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
EGridDesc_M_N
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
K1
,
M1PerThread
,
N1PerThread
,
KPerThread
,
M1N1ThreadClusterM1Xs
,
M1N1ThreadClusterN1Xs
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
ABlockTransferSrcVectorTensorContiguousDimOrder
,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferSrcVectorTensorContiguousDimOrder
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_K0_N_K1
{}));
using
DsGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
DsGridDesc_M_N
{}));
using
EGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
EGridDesc_M_N
{}));
using
DefaultBlock2CTileMap
=
decltype
(
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
EGridDesc_M_N
{}));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_k0_m0_m1_k1_
{},
b_grid_desc_k0_n0_n1_k1_
{},
e_grid_desc_m0_m10_m11_n0_n10_n11_
{},
block_2_ctile_map_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmMultipleD_Dl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmMultipleD_Dl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
StrideDs
[
i
]);
});
e_grid_desc_m_n_
=
DeviceGemmMultipleD_Dl
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideE
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
e_grid_desc_m_n_
))
{
a_grid_desc_k0_m0_m1_k1_
=
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
a_grid_desc_k0_m_k1_
);
b_grid_desc_k0_n0_n1_k1_
=
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
b_grid_desc_k0_n_k1_
);
ds_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
ds_grid_desc_m_n_
);
e_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
e_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1_
;
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1_
;
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11_
;
EGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11_
;
DefaultBlock2CTileMap
block_2_ctile_map_
;
// TODO: unused since gridwise_gemm_dl_v1r3 does NOT support prologue for the time being.
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceGemmMultipleD_Dl
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
std
::
cout
<<
"arg.a_grid_desc_k0_m0_m1_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_k0_n0_n1_k1_{"
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.e_grid_desc_m_n_{ "
<<
arg
.
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
e_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmDlMultipleD_km_kn_mn has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
.
GetLength
(
I0
),
arg
.
e_grid_desc_m_n_
.
GetLength
(
I1
));
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
,
auto
has_double_tail_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
constexpr
bool
has_double_loop
=
has_double_tail_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_dl_multiple_d
<
GridwiseGemm
,
ADataType
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_K0_M0_M1_K1
,
DeviceOp
::
BGridDesc_K0_N0_N1_K1
,
DeviceOp
::
DsGridDesc_M0_M10_M11_N0_N10_N11
,
DeviceOp
::
EGridDesc_M0_M10_M11_N0_N10_N11
,
DefaultBlock2CTileMap
,
has_main_loop
,
has_double_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_k0_m0_m1_k1_
,
arg
.
b_grid_desc_k0_n0_n1_k1_
,
arg
.
ds_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
e_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
block_2_ctile_map_
);
};
const
auto
K0
=
arg
.
a_grid_desc_k0_m0_m1_k1_
.
GetLength
(
I0
);
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K0
);
const
bool
has_double_tail_k_block_loop
=
GridwiseGemm
::
CalculateHasDoubleTailKBlockLoop
(
K0
);
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx1030"
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
e_grid_desc_m_n_
);
}
else
{
return
false
;
}
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmMultipleD_Dl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
M1PerThread
<<
", "
<<
N1PerThread
<<
", "
<<
KPerThread
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
0 → 100644
View file @
dc0bae32
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gemm_layernorm/gridwise_gemm_multiple_d_welford_first_half_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gemm_layernorm/gridwise_welford_second_half_layernorm2d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseGemmWelford
,
typename
ABDataType
,
typename
DsPointer
,
typename
EMeanVarDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
,
typename
CountGridDescriptor_MBlock_MPerBlock_NBlock
,
typename
Block2ETileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_multiple_d_welford_first_half_xdl_cshuffle
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EMeanVarDataType
*
__restrict__
p_e_grid
,
EMeanVarDataType
*
__restrict__
p_welford_mean_grid
,
EMeanVarDataType
*
__restrict__
p_welford_var_grid
,
int32_t
*
__restrict__
p_welford_count_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
mean_var_grid_desc_mblock_mperblock_nblock
,
const
CountGridDescriptor_MBlock_MPerBlock_NBlock
count_grid_desc_mblock_mperblock_nblock
,
const
Block2ETileMap
block_2_etile_map
,
index_t
NRaw
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemmWelford
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemmWelford
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_welford_mean_grid
,
p_welford_var_grid
,
p_welford_count_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
mean_var_grid_desc_mblock_mperblock_nblock
,
count_grid_desc_mblock_mperblock_nblock
,
block_2_etile_map
,
NRaw
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
p_welford_mean_grid
;
ignore
=
p_welford_var_grid
;
ignore
=
p_welford_count_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
mean_var_grid_desc_mblock_mperblock_nblock
;
ignore
=
count_grid_desc_mblock_mperblock_nblock
;
ignore
=
block_2_etile_map
;
ignore
=
NRaw
;
#endif
}
template
<
typename
GridwiseWelfordLayernorm
,
typename
EMeanVarDataType
,
typename
HDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
EHGridDesc_M_N
,
typename
LayernormMeanVarGridDesc_M_NBlock
,
typename
LayernormCountGridDesc_M_NBlock
,
typename
GammaBetaGridDesc_N
,
typename
HElementwiseOperation
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_welford_layernorm2d_second_half
(
const
EMeanVarDataType
*
__restrict__
p_e_grid
,
const
EMeanVarDataType
*
__restrict__
p_in_welford_mean_grid
,
const
EMeanVarDataType
*
__restrict__
p_in_welford_var_grid
,
const
int32_t
*
__restrict__
p_in_welford_count_grid
,
const
GammaDataType
*
__restrict__
p_gamma_grid
,
const
BetaDataType
*
__restrict__
p_beta_grid
,
HDataType
*
__restrict__
p_h_grid
,
const
EHGridDesc_M_N
e_grid_desc_m_n
,
const
EHGridDesc_M_N
h_grid_desc_m_n
,
const
LayernormMeanVarGridDesc_M_NBlock
mean_var_grid_desc_m_nblock
,
const
LayernormCountGridDesc_M_NBlock
count_grid_desc_m_nblock
,
const
GammaBetaGridDesc_N
gamma_grid_desc_n
,
const
GammaBetaGridDesc_N
beta_grid_desc_n
,
index_t
numMeanVarCountBlockTileIteration_N
,
index_t
NBlockClusterLength
,
ComputeDataType
epsilon
,
HElementwiseOperation
h_element_op
)
{
GridwiseWelfordLayernorm
::
Run
(
p_e_grid
,
p_in_welford_mean_grid
,
p_in_welford_var_grid
,
p_in_welford_count_grid
,
p_gamma_grid
,
p_beta_grid
,
p_h_grid
,
e_grid_desc_m_n
,
h_grid_desc_m_n
,
mean_var_grid_desc_m_nblock
,
count_grid_desc_m_nblock
,
gamma_grid_desc_n
,
beta_grid_desc_n
,
numMeanVarCountBlockTileIteration_N
,
NBlockClusterLength
,
epsilon
,
h_element_op
);
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// output : H[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// H = layernorm(E)
// Assume:
// D0, D1, ... and E have the same layout
// Calculate mean & variance along N dimension in layernorm(E)
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
HLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EMeanVarDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
HDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
HElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
GemmMPerBlock
,
index_t
GemmNPerBlock
,
index_t
GemmKPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
PostShuffleThreadClusterSize_M_N
,
index_t
PostShuffleScalarPerVector
,
typename
LayernormThreadClusterSize_M_N
,
index_t
LayernormThreadSliceSize_M
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
DeviceGemmMultipleDLayernorm_Xdl_CShuffle
:
public
DeviceGemmMultipleDLayernorm
<
ALayout
,
BLayout
,
DsLayout
,
HLayout
,
ADataType
,
BDataType
,
DsDataType
,
GammaDataType
,
BetaDataType
,
HDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
HElementwiseOperation
>
{
// EDataType, MeanDataType and VarDataType must be the same.
// eg. M, N, K = [1, 1, 1],
// in case of layernorm, divisor = 1 / sqrt(var + 1e-5) = 316.227783
// if (x - mean) != 0, (x - mean) * divisor * gamma might be too large
// However, (x - mean) * divisor * gamma should be 0 in this case
using
DeviceOp
=
DeviceGemmMultipleDLayernorm_Xdl_CShuffle
;
using
ELayout
=
HLayout
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
LayernormHDstVectorSize
=
PostShuffleScalarPerVector
;
static
constexpr
index_t
LayernormGammaSrcVectorSize
=
PostShuffleScalarPerVector
;
static
constexpr
index_t
LayernormBetaSrcVectorSize
=
PostShuffleScalarPerVector
;
static
constexpr
index_t
LayernormESrcVectorSize
=
PostShuffleScalarPerVector
;
static
constexpr
index_t
LayernormThreadSliceSize_N
=
PostShuffleScalarPerVector
;
using
LayernormBlockTileSize_M_N
=
Sequence
<
LayernormThreadClusterSize_M_N
::
At
(
0
)
*
LayernormThreadSliceSize_M
,
LayernormThreadClusterSize_M_N
::
At
(
1
)
*
LayernormThreadSliceSize_N
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
GemmMPerBlock
,
GemmNPerBlock
,
GemmKPerBlock
};
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
DoPads
,
index_t
MPerTile
,
index_t
NPerTile
>
static
auto
MakeEHGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
Stride
)
{
// Only support row major for E and H
const
auto
grid_desc_m_n
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
Stride
,
I1
));
return
PadTensorDescriptor
(
grid_desc_m_n
,
make_tuple
(
MPerTile
,
NPerTile
),
DoPads
{});
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
static_assert
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
);
return
DeviceOp
::
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
GemmMPerBlock
,
GemmNPerBlock
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DoPads
,
index_t
MPerTile
,
index_t
NPerTile
>
static
auto
MakeMeanVarDescriptor_M_N
(
index_t
M
,
index_t
N
)
{
const
auto
grid_desc_m_n
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
N
,
I1
));
return
PadTensorDescriptor
(
grid_desc_m_n
,
make_tuple
(
MPerTile
,
NPerTile
),
DoPads
{});
}
template
<
typename
DoPads
,
index_t
MPerTile
,
index_t
NPerTile
>
static
auto
MakeCountDescriptor_M_N
(
index_t
M
,
index_t
N
)
{
// We will broadcast [N] to [M, N] in this descriptor
// Hence, 1st stride is 0
const
auto
grid_desc_m_n
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I0
,
I1
));
return
PadTensorDescriptor
(
grid_desc_m_n
,
make_tuple
(
MPerTile
,
NPerTile
),
DoPads
{});
}
template
<
index_t
XPerTile
>
static
auto
MakeDescriptor_X
(
index_t
X
)
{
const
auto
grid_desc_x
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
X
));
return
PadTensorDescriptor
(
grid_desc_x
,
make_tuple
(
XPerTile
),
Sequence
<
true
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
// We have to separate mean var descriptor for gemm and layernorm bacause of different grid
// layout(different padding)
using
GemmMeanVarGridDesc_M_NBlock
=
decltype
(
MakeMeanVarDescriptor_M_N
<
Sequence
<
true
,
false
>
,
GemmMPerBlock
,
GemmNPerBlock
>
(
1
,
1
));
using
GemmCountGridDesc_M_NBlock
=
decltype
(
MakeCountDescriptor_M_N
<
Sequence
<
true
,
false
>
,
GemmMPerBlock
,
GemmNPerBlock
>
(
1
,
1
));
using
LayernormMeanVarGridDesc_M_NBlock
=
decltype
(
MakeMeanVarDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
1
,
1
));
using
LayernormCountGridDesc_M_NBlock
=
decltype
(
MakeCountDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
1
,
1
));
using
GammaBetaGridDesc_N
=
decltype
(
MakeDescriptor_X
<
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
1
));
using
EHGridDesc_M_N
=
decltype
(
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
1
,
1
>
(
1
,
1
,
1
));
using
GridwiseGemmWelford
=
GridwiseGemmMultipleDWelfordFirstHalf_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EMeanVarDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EHGridDesc_M_N
,
GemmMeanVarGridDesc_M_NBlock
,
GemmCountGridDesc_M_NBlock
,
NumGemmKPrefetchStage
,
BlockSize
,
GemmMPerBlock
,
GemmNPerBlock
,
GemmKPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
PostShuffleThreadClusterSize_M_N
,
PostShuffleScalarPerVector
,
LoopSched
,
PipelineVer
>
;
using
Block2ETileMap
=
typename
GridwiseGemmWelford
::
DefaultBlock2ETileMap
;
using
GridwiseWelfordLayernorm
=
GridwiseWelfordSecondHalfLayernorm2d
<
EMeanVarDataType
,
HDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
EHGridDesc_M_N
,
LayernormMeanVarGridDesc_M_NBlock
,
LayernormCountGridDesc_M_NBlock
,
GammaBetaGridDesc_N
,
HElementwiseOperation
,
BlockSize
,
LayernormThreadClusterSize_M_N
::
At
(
I0
),
LayernormThreadClusterSize_M_N
::
At
(
I1
),
LayernormThreadSliceSize_M
,
LayernormThreadSliceSize_N
,
LayernormESrcVectorSize
,
LayernormHDstVectorSize
,
LayernormGammaSrcVectorSize
,
LayernormBetaSrcVectorSize
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
const
void
*
p_gamma_grid
,
const
void
*
p_beta_grid
,
void
*
p_h_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideH
,
double
epsilon
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
HElementwiseOperation
h_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_workspace_e_grid_
{
nullptr
},
p_workspace_mean_
{
nullptr
},
p_workspace_var_
{
nullptr
},
p_workspace_count_
{
nullptr
},
p_gamma_grid_
{
static_cast
<
const
GammaDataType
*>
(
p_gamma_grid
)},
p_beta_grid_
{
static_cast
<
const
BetaDataType
*>
(
p_beta_grid
)},
p_h_grid_
{
static_cast
<
HDataType
*>
(
p_h_grid
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
KRaw
,
NRaw
,
StrideB
)},
ds_grid_desc_m_n_
{},
gemm_e_grid_desc_m_n_
{
DeviceOp
::
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
GemmMPerBlock
,
GemmNPerBlock
>
(
MRaw
,
NRaw
,
StrideH
)},
layernorm_e_grid_desc_m_n_
{
DeviceOp
::
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
MRaw
,
NRaw
,
StrideH
)},
gemm_mean_var_grid_desc_m_nblock_
{},
gemm_count_grid_desc_m_nblock_
{},
layernorm_mean_var_grid_desc_m_nblock_
{},
layernorm_count_grid_desc_m_nblock_
{},
gamma_grid_desc_n_
{
DeviceOp
::
MakeDescriptor_X
<
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
NRaw
)},
beta_grid_desc_n_
{
DeviceOp
::
MakeDescriptor_X
<
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
NRaw
)},
h_grid_desc_m_n_
{
DeviceOp
::
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
MRaw
,
NRaw
,
StrideH
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemmWelford
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemmWelford
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
block_2_etile_map_
{
GridwiseGemmWelford
::
MakeDefaultBlock2ETileMap
(
gemm_e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
h_element_op_
{
h_element_op
},
MRaw_
{
MRaw
},
NRaw_
{
NRaw
},
KRaw_
{
KRaw
},
gemm_nblock_
{
math
::
integer_divide_ceil
(
NRaw
,
GemmNPerBlock
)},
epsilon_
{
static_cast
<
AccDataType
>
(
epsilon
)}
{
// We don't need to pad in N dimension in gemm for mean/var/count. Set NPerTile 1.
gemm_mean_var_grid_desc_m_nblock_
=
DeviceOp
::
MakeMeanVarDescriptor_M_N
<
Sequence
<
true
,
false
>
,
GemmMPerBlock
,
1
>
(
MRaw
,
gemm_nblock_
);
gemm_count_grid_desc_m_nblock_
=
DeviceOp
::
MakeCountDescriptor_M_N
<
Sequence
<
true
,
false
>
,
GemmMPerBlock
,
1
>
(
MRaw
,
gemm_nblock_
);
layernorm_mean_var_grid_desc_m_nblock_
=
DeviceOp
::
MakeMeanVarDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
MRaw
,
gemm_nblock_
);
layernorm_count_grid_desc_m_nblock_
=
DeviceOp
::
MakeCountDescriptor_M_N
<
Sequence
<
true
,
true
>
,
LayernormBlockTileSize_M_N
::
At
(
0
),
LayernormBlockTileSize_M_N
::
At
(
1
)
>
(
MRaw
,
gemm_nblock_
);
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEHGridDescriptor_M_N
<
Sequence
<
true
,
true
>
,
GemmMPerBlock
,
GemmNPerBlock
>
(
MRaw
,
NRaw
,
StrideDs
[
i
]);
});
// populate desc for Ds/E/mean/var/count
if
(
GridwiseGemmWelford
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
gemm_e_grid_desc_m_n_
,
block_2_etile_map_
))
{
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemmWelford
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemmWelford
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
gemm_e_grid_desc_m_n_
);
gemm_mean_var_grid_desc_mblock_mperblock_nblock_
=
GridwiseGemmWelford
::
MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock
(
gemm_mean_var_grid_desc_m_nblock_
);
gemm_count_grid_desc_mblock_mperblock_nblock_
=
GridwiseGemmWelford
::
MakeMeanVarCountGridDescriptor_MBlock_MPerBlock_NBlock
(
gemm_count_grid_desc_m_nblock_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
gemm_e_grid_desc_m_n_
<<
std
::
endl
;
std
::
cout
<<
"H[M, N]: "
<<
h_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemmWelford
::
DsGridPointer
p_ds_grid_
;
void
*
p_workspace_e_grid_
;
void
*
p_workspace_mean_
;
void
*
p_workspace_var_
;
void
*
p_workspace_count_
;
const
GammaDataType
*
p_gamma_grid_
;
const
BetaDataType
*
p_beta_grid_
;
HDataType
*
p_h_grid_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EHGridDesc_M_N
gemm_e_grid_desc_m_n_
;
EHGridDesc_M_N
layernorm_e_grid_desc_m_n_
;
GemmMeanVarGridDesc_M_NBlock
gemm_mean_var_grid_desc_m_nblock_
;
GemmCountGridDesc_M_NBlock
gemm_count_grid_desc_m_nblock_
;
LayernormMeanVarGridDesc_M_NBlock
layernorm_mean_var_grid_desc_m_nblock_
;
LayernormCountGridDesc_M_NBlock
layernorm_count_grid_desc_m_nblock_
;
GammaBetaGridDesc_N
gamma_grid_desc_n_
;
GammaBetaGridDesc_N
beta_grid_desc_n_
;
EHGridDesc_M_N
h_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
typename
GridwiseGemmWelford
::
DefaultAGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
typename
GridwiseGemmWelford
::
DefaultBGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemmWelford
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemmWelford
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemmWelford
::
MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
gemm_mean_var_grid_desc_mblock_mperblock_nblock_
;
typename
GridwiseGemmWelford
::
CountGridDescriptor_MBlock_MPerBlock_NBlock
gemm_count_grid_desc_mblock_mperblock_nblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
HElementwiseOperation
h_element_op_
;
index_t
MRaw_
;
index_t
NRaw_
;
index_t
KRaw_
;
index_t
gemm_nblock_
;
AccDataType
epsilon_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
float
avg_time
=
0
;
if
(
!
GridwiseGemmWelford
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
gemm_e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmWelford has invalid setting"
);
}
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
gemm_e_grid_desc_m_n_
);
const
auto
M
=
arg
.
h_grid_desc_m_n_
.
GetLength
(
I0
);
const
auto
N
=
arg
.
h_grid_desc_m_n_
.
GetLength
(
I1
);
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel_gemm_welford
=
kernel_gemm_multiple_d_welford_first_half_xdl_cshuffle
<
GridwiseGemmWelford
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemmWelford
::
DsGridPointer
,
EMeanVarDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
typename
GridwiseGemmWelford
::
DefaultAGridDesc_AK0_M_AK1
,
typename
GridwiseGemmWelford
::
DefaultBGridDesc_BK0_N_BK1
,
typename
GridwiseGemmWelford
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemmWelford
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemmWelford
::
MeanVarGridDescriptor_MBlock_MPerBlock_NBlock
,
typename
GridwiseGemmWelford
::
CountGridDescriptor_MBlock_MPerBlock_NBlock
,
typename
GridwiseGemmWelford
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
const
auto
kernel_welford_layernorm
=
kernel_welford_layernorm2d_second_half
<
GridwiseWelfordLayernorm
,
EMeanVarDataType
,
HDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
EHGridDesc_M_N
,
LayernormMeanVarGridDesc_M_NBlock
,
LayernormCountGridDesc_M_NBlock
,
GammaBetaGridDesc_N
,
HElementwiseOperation
>
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_gemm_welford
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
static_cast
<
EMeanVarDataType
*>
(
arg
.
p_workspace_e_grid_
),
static_cast
<
EMeanVarDataType
*>
(
arg
.
p_workspace_mean_
),
static_cast
<
EMeanVarDataType
*>
(
arg
.
p_workspace_var_
),
static_cast
<
int32_t
*>
(
arg
.
p_workspace_count_
),
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
gemm_mean_var_grid_desc_mblock_mperblock_nblock_
,
arg
.
gemm_count_grid_desc_mblock_mperblock_nblock_
,
arg
.
block_2_etile_map_
,
arg
.
NRaw_
);
index_t
MBlockClusterLength
=
math
::
integer_divide_ceil
(
M
,
LayernormBlockTileSize_M_N
::
At
(
0
));
index_t
NBlockClusterLength
=
math
::
integer_divide_ceil
(
N
,
LayernormBlockTileSize_M_N
::
At
(
1
));
grid_size
=
MBlockClusterLength
*
NBlockClusterLength
;
index_t
numMeanVarCountBlockTileIteration_N
=
math
::
integer_divide_ceil
(
arg
.
gemm_nblock_
,
LayernormThreadClusterSize_M_N
::
At
(
I1
));
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_welford_layernorm
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
static_cast
<
EMeanVarDataType
*>
(
arg
.
p_workspace_e_grid_
),
static_cast
<
const
EMeanVarDataType
*>
(
arg
.
p_workspace_mean_
),
static_cast
<
const
EMeanVarDataType
*>
(
arg
.
p_workspace_var_
),
static_cast
<
const
int32_t
*>
(
arg
.
p_workspace_count_
),
arg
.
p_gamma_grid_
,
arg
.
p_beta_grid_
,
arg
.
p_h_grid_
,
arg
.
layernorm_e_grid_desc_m_n_
,
arg
.
h_grid_desc_m_n_
,
arg
.
layernorm_mean_var_grid_desc_m_nblock_
,
arg
.
layernorm_count_grid_desc_m_nblock_
,
arg
.
gamma_grid_desc_n_
,
arg
.
beta_grid_desc_n_
,
numMeanVarCountBlockTileIteration_N
,
NBlockClusterLength
,
arg
.
epsilon_
,
arg
.
h_element_op_
);
return
avg_time
;
};
if
(
GridwiseGemmWelford
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
pArg
)
const
override
{
const
Argument
*
pArg_
=
dynamic_cast
<
const
Argument
*>
(
pArg
);
size_t
workspace_size
=
0
;
int
gemm_welford_size
=
pArg_
->
MRaw_
*
pArg_
->
gemm_nblock_
;
// workspace for welford intermediate mean
workspace_size
+=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
)
+
64
;
// workspace for welford intermediate mean
workspace_size
+=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
)
+
64
;
// workspace for welford intermediate count
workspace_size
+=
pArg_
->
gemm_nblock_
*
sizeof
(
int32_t
)
+
64
;
if
constexpr
(
!
is_same_v
<
EMeanVarDataType
,
HDataType
>
)
workspace_size
+=
pArg_
->
MRaw_
*
pArg_
->
NRaw_
*
sizeof
(
EMeanVarDataType
);
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
pArg_
->
p_workspace_
=
p_workspace
;
int
gemm_welford_size
=
pArg_
->
MRaw_
*
pArg_
->
gemm_nblock_
;
// setup buffer used for intermediate welford mean
pArg_
->
p_workspace_mean_
=
static_cast
<
char
*>
(
pArg_
->
p_workspace_
);
index_t
mean_space_sz
=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
);
mean_space_sz
=
math
::
integer_least_multiple
(
mean_space_sz
,
64
);
// setup buffer used for intermediate welford varirance
pArg_
->
p_workspace_var_
=
reinterpret_cast
<
char
*>
(
pArg_
->
p_workspace_mean_
)
+
mean_space_sz
;
index_t
variance_space_sz
=
gemm_welford_size
*
sizeof
(
EMeanVarDataType
);
variance_space_sz
=
math
::
integer_least_multiple
(
variance_space_sz
,
64
);
// setup buffer used for intermediate welford count
pArg_
->
p_workspace_count_
=
reinterpret_cast
<
char
*>
(
pArg_
->
p_workspace_var_
)
+
variance_space_sz
;
index_t
count_space_sz
=
gemm_welford_size
*
sizeof
(
int32_t
);
count_space_sz
=
math
::
integer_least_multiple
(
count_space_sz
,
64
);
if
constexpr
(
!
is_same_v
<
EMeanVarDataType
,
HDataType
>
)
pArg_
->
p_workspace_e_grid_
=
reinterpret_cast
<
char
*>
(
pArg_
->
p_workspace_count_
)
+
count_space_sz
;
else
pArg_
->
p_workspace_e_grid_
=
static_cast
<
void
*>
(
pArg_
->
p_h_grid_
);
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
// check vector load/store
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// check vector load of A
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
MRaw_
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector laod of B
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
// FIXME: not rigorous
if
(
arg
.
NRaw_
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector load of Ds
// only support RowMajor for now
bool
all_valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
if
constexpr
(
!
is_same_v
<
DLayout
,
Row
>
)
{
all_valid
=
false
;
}
});
if
(
!
all_valid
)
{
return
false
;
}
// check vector store of E
// E and H only support RowMajor for now
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
&&
is_same_v
<
HLayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
PostShuffleScalarPerVector
!=
0
||
arg
.
NRaw_
%
LayernormGammaSrcVectorSize
!=
0
||
arg
.
NRaw_
%
LayernormBetaSrcVectorSize
!=
0
||
arg
.
NRaw_
%
LayernormHDstVectorSize
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_h
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideH
,
double
epsilon
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
HElementwiseOperation
h_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_gamma
,
p_beta
,
p_h
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_h
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideH
,
double
epsilon
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
HElementwiseOperation
h_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_gamma
,
p_beta
,
p_h
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceGemmMultipleDLayernorm_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
GemmMPerBlock
<<
", "
<<
GemmNPerBlock
<<
", "
<<
GemmKPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
View file @
dc0bae32
...
...
@@ -510,7 +510,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceOperatio
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if
0
#if
DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
...
...
@@ -525,8 +525,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceOperatio
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std::cout << "arg.reduce_grid_desc_m_{ " << arg.reduce_grid_desc_m_.GetLength(I0)
<< "}"
<< std::endl;
std
::
cout
<<
"arg.reduce_grid_desc_m_{ "
<<
arg
.
reduce_grid_desc_m_
.
GetLength
(
I0
)
<<
"}"
<<
std
::
endl
;
}
#endif
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
0 → 100644
View file @
dc0bae32
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGemmWmma_CShuffle
:
public
DeviceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
#ifdef ENABLE_COLMAJOR
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
#endif
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
// Gridwise descriptor, mapping to whole given provblem.
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_wmma
<
BlockSize
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
CDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
c_grid_desc_m_n_
{},
c_grid_desc_mblock_mperblock_nblock_nperblock
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmWmma_CShuffle
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmWmma_CShuffle
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
c_grid_desc_m_n_
=
DeviceGemmWmma_CShuffle
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
c_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
index_t
M01_
;
index_t
N01_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceGemmWmma_CShuffle
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c_grid_desc_m_n_.GetLength(I1) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I2) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_wmma
<
GridwiseGemm
,
ADataType
,
BDataType
,
CDataType
,
remove_reference_t
<
DeviceGemmWmma_CShuffle
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmWmma_CShuffle
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
true
>
;
// Last Option is W/O
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_wmma
<
GridwiseGemm
,
ADataType
,
BDataType
,
CDataType
,
remove_reference_t
<
DeviceGemmWmma_CShuffle
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmWmma_CShuffle
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceGemmWmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerWMMA
<<
", "
<<
NPerWMMA
<<
", "
<<
MRepeat
<<
", "
<<
NRepeat
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
View file @
dc0bae32
...
...
@@ -265,7 +265,8 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
kraw_
{
K
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmXdl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
...
...
@@ -299,6 +300,7 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
kraw_
;
};
// Invoker
...
...
@@ -308,7 +310,7 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if
0
#if
DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_k0_m_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
...
...
@@ -443,6 +445,11 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
return
false
;
}
if
(
arg
.
kraw_
%
K1
!=
0
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
View file @
dc0bae32
...
...
@@ -422,7 +422,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
kraw_
{
KRaw
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
...
...
@@ -448,6 +449,7 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
kraw_
;
};
// Invoker
...
...
@@ -457,7 +459,7 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if
0
#if
DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
...
...
@@ -577,6 +579,15 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
return
false
;
}
if
((
arg
.
kraw_
%
AK1
!=
0
||
arg
.
kraw_
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
View file @
dc0bae32
...
...
@@ -514,7 +514,7 @@ struct DeviceGemmLayerNorm_Xdl_CShuffle : public BaseOperator
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if
0
#if
DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
View file @
dc0bae32
...
...
@@ -299,6 +299,7 @@ struct DeviceGemmXdlSkipBLds : public DeviceGemm<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if DEBUG_LOG
{
std
::
cout
<<
"arg.a_grid_desc_k0_m_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
...
...
@@ -311,6 +312,7 @@ struct DeviceGemmXdlSkipBLds : public DeviceGemm<ALayout,
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
dc0bae32
...
...
@@ -378,7 +378,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
{
using
Argument
=
DeviceGemmXdlSplitKCShuffle
::
Argument
;
void
ShowInfo
(
const
Argument
&
arg
)
void
Print
(
const
Argument
&
arg
)
{
std
::
cout
<<
"arg.a_grid_desc_kbatch_k0_m_k1_{"
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
...
...
@@ -398,7 +398,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
ShowInfo
(
arg
);
if
(
stream_config
.
log_level_
>
0
)
{
Print
(
arg
);
}
const
auto
kbatch
=
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
dc0bae32
...
...
@@ -373,12 +373,20 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
skipped_group_count_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
if
(
M
==
0
)
{
skipped_group_count_
++
;
continue
;
}
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
...
...
@@ -470,6 +478,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
// private:
index_t
group_count_
;
index_t
skipped_group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
...
...
@@ -490,6 +500,7 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
#if DEBUG_LOG
std
::
cout
<<
"group: "
<<
i
<<
" arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
...
...
@@ -510,6 +521,7 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_m_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_n_k_
,
...
...
@@ -581,7 +593,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_multiple_reduce_multiblock.hpp
View file @
dc0bae32
...
...
@@ -73,8 +73,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
static_for
<
0
,
NumReduction
,
1
>
{}([
&
](
auto
I
)
{
using
OutDataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
flag
=
flag
&&
ck
::
reduce
::
InMemoryDataOperatonSupportedOnDataType
<
OutMemoryDataOperation
,
OutDataType
>::
value
;
flag
&&
ck
::
reduce
::
InMemoryDataOperat
i
onSupportedOnDataType
<
OutMemoryDataOperation
,
OutDataType
>::
value
;
});
return
flag
;
...
...
@@ -270,8 +270,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>&
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
betas
,
const
std
::
array
<
double
,
NumReduction
>&
alphas
,
const
std
::
array
<
double
,
NumReduction
>&
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>&
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
...
...
@@ -286,8 +286,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
for
(
size_t
i
=
0
;
i
<
NumReduction
;
i
++
)
{
alpha_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*
>
(
alphas
[
i
]);
beta_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*
>
(
betas
[
i
]);
alpha_values_
(
i
)
=
static_cast
<
AccDataType
>
(
alphas
[
i
]);
beta_values_
(
i
)
=
static_cast
<
AccDataType
>
(
betas
[
i
]);
};
in_dev_
=
static_cast
<
const
InDataType
*>
(
in_dev
);
...
...
@@ -547,8 +547,8 @@ struct DeviceMultipleReduceMultiBlock : public DeviceMultipleReduce<Rank,
const
std
::
array
<
index_t
,
NumOutputDim
>
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>
betas
,
const
std
::
array
<
double
,
NumReduction
>
alphas
,
const
std
::
array
<
double
,
NumReduction
>
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_multiple_reduce_threadwise.hpp
View file @
dc0bae32
...
...
@@ -195,8 +195,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>&
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
betas
,
const
std
::
array
<
double
,
NumReduction
>&
alphas
,
const
std
::
array
<
double
,
NumReduction
>&
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>&
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
...
...
@@ -211,8 +211,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
for
(
size_t
i
=
0
;
i
<
NumReduction
;
i
++
)
{
alpha_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*
>
(
alphas
[
i
]);
beta_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*
>
(
betas
[
i
]);
alpha_values_
(
i
)
=
static_cast
<
AccDataType
>
(
alphas
[
i
]);
beta_values_
(
i
)
=
static_cast
<
AccDataType
>
(
betas
[
i
]);
};
in_dev_
=
static_cast
<
const
InDataType
*>
(
in_dev
);
...
...
@@ -374,8 +374,8 @@ struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
const
std
::
array
<
index_t
,
NumOutputDim
>
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>
betas
,
const
std
::
array
<
double
,
NumReduction
>
alphas
,
const
std
::
array
<
double
,
NumReduction
>
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
View file @
dc0bae32
...
...
@@ -221,18 +221,19 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccElementwiseOperation
acc_elementwise_op
,
AccDataTyp
e
epsilon
,
doubl
e
epsilon
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
const
BetaDataType
*
p_beta
,
YDataType
*
p_y
)
:
epsilon_
(
epsilon
),
p_x_
(
p_x
),
:
p_x_
(
p_x
),
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
acc_elementwise_op_
(
acc_elementwise_op
)
{
epsilon_
=
static_cast
<
AccDataType
>
(
epsilon
);
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
yStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
yStrides
,
reduceDims
);
...
...
@@ -421,7 +422,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataTyp
e
epsilon
,
doubl
e
epsilon
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp
View file @
dc0bae32
...
...
@@ -40,8 +40,16 @@ template <typename InDataType,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceMultiBlock
:
public
DeviceReduce
<
Rank
,
NumReduceDim
,
InElementwiseOperation
,
AccElementwiseOperation
>
struct
DeviceReduceMultiBlock
:
public
DeviceReduce
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
OutputIndex
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
...
...
@@ -67,8 +75,8 @@ struct DeviceReduceMultiBlock
static
constexpr
bool
use_multiblock
=
(
OutMemoryDataOperation
==
InMemoryDataOperationEnum
::
AtomicAdd
);
static_assert
(
ck
::
reduce
::
InMemoryDataOperatonSupportedOnDataType
<
OutMemoryDataOperation
,
OutDataType
>::
value
,
static_assert
(
ck
::
reduce
::
InMemoryDataOperat
i
onSupportedOnDataType
<
OutMemoryDataOperation
,
OutDataType
>::
value
,
"The OutDataType must support the specified OutMemoryDataOperation!"
);
static_assert
(
!
use_multiblock
||
(
use_multiblock
&&
!
OutputIndex
),
...
...
@@ -209,8 +217,8 @@ struct DeviceReduceMultiBlock
const
std
::
array
<
index_t
,
NumDstDim
>
outLengths
,
const
std
::
array
<
index_t
,
NumDstDim
>
outStrides
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
float
alpha
,
float
beta
,
double
alpha
,
double
beta
,
const
InDataType
*
in_dev
,
const
IndexDataType
*
in_index_dev
,
OutDataType
*
out_dev
,
...
...
@@ -494,8 +502,8 @@ struct DeviceReduceMultiBlock
const
std
::
array
<
index_t
,
NumDstDim
>
outLengths
,
const
std
::
array
<
index_t
,
NumDstDim
>
outStrides
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
float
alpha
,
float
beta
,
double
alpha
,
double
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_reduce_threadwise.hpp
View file @
dc0bae32
...
...
@@ -35,8 +35,17 @@ template <typename InDataType,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceThreadWise
:
public
DeviceReduce
<
Rank
,
NumReduceDim
,
InElementwiseOperation
,
AccElementwiseOperation
>
struct
DeviceReduceThreadWise
:
public
DeviceReduce
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
OutputIndex
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
...
...
@@ -156,8 +165,8 @@ struct DeviceReduceThreadWise
const
std
::
array
<
index_t
,
NumDstDim
>
outLengths
,
const
std
::
array
<
index_t
,
NumDstDim
>
outStrides
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
float
alpha
,
float
beta
,
double
alpha
,
double
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_index_dev
,
...
...
@@ -332,8 +341,8 @@ struct DeviceReduceThreadWise
const
std
::
array
<
index_t
,
NumDstDim
>
outLengths
,
const
std
::
array
<
index_t
,
NumDstDim
>
outStrides
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
float
alpha
,
float
beta
,
double
alpha
,
double
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
...
...
Prev
1
2
3
4
5
6
7
8
9
10
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment