Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d8f1458f
Commit
d8f1458f
authored
May 24, 2022
by
Jing Zhang
Browse files
Merge remote-tracking branch 'origin/develop' into grouped_gemm_args_const_buff
parents
6e983ba2
40b59a63
Changes
161
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
331 additions
and
143 deletions
+331
-143
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i32_i8.hpp
...e_reduce_instance_multiblock_partial_reduce_i8_i32_i8.hpp
+0
-31
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i8_i8.hpp
...ce_reduce_instance_multiblock_partial_reduce_i8_i8_i8.hpp
+0
-47
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise.hpp
...instance/gpu/reduce/device_reduce_instance_threadwise.hpp
+36
-39
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_b16_f32_b16.hpp
.../reduce/device_reduce_instance_threadwise_b16_f32_b16.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f16_f16_f16.hpp
.../reduce/device_reduce_instance_threadwise_f16_f16_f16.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f16_f32_f16.hpp
.../reduce/device_reduce_instance_threadwise_f16_f32_f16.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f32_f32_f32.hpp
.../reduce/device_reduce_instance_threadwise_f32_f32_f32.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f32_f64_f32.hpp
.../reduce/device_reduce_instance_threadwise_f32_f64_f32.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f64_f64_f64.hpp
.../reduce/device_reduce_instance_threadwise_f64_f64_f64.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_i8_i32_i8.hpp
...pu/reduce/device_reduce_instance_threadwise_i8_i32_i8.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_i8_i8_i8.hpp
...gpu/reduce/device_reduce_instance_threadwise_i8_i8_i8.hpp
+0
-2
library/include/ck/library/utility/check_err.hpp
library/include/ck/library/utility/check_err.hpp
+3
-3
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+1
-0
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+16
-7
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
+45
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
+45
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
+45
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
+46
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
+45
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
...gpu/gemm/device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
+46
-0
No files found.
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i32_i8.hpp
deleted
100644 → 0
View file @
6e983ba2
#ifndef DEVICE_REDUCE_INSTANCE_MULTIBLOCK_PARTIAL_REDUCE_I8_I32_I8_HPP
#define DEVICE_REDUCE_INSTANCE_MULTIBLOCK_PARTIAL_REDUCE_I8_I32_I8_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
0
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int32_t
,
int8_t
,
5
,
0
,
0
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_multiblock_partial_reduce_i8_i8_i8.hpp
deleted
100644 → 0
View file @
6e983ba2
#ifndef DEVICE_REDUCE_INSTANCE_MULTIBLOCK_PARTIAL_REDUCE_I8_I8_I8_HPP
#define DEVICE_REDUCE_INSTANCE_MULTIBLOCK_PARTIAL_REDUCE_I8_I8_I8_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_reduce_instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
0
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
2
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
3
,
0
,
1
,
2
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
4
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
4
,
1
);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_REF_BY_ID
(
int8_t
,
int8_t
,
int8_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace device_reduce_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise.hpp
View file @
d8f1458f
...
@@ -58,8 +58,8 @@ template <typename InDataType,
...
@@ -58,8 +58,8 @@ template <typename InDataType,
int
Rank
,
int
Rank
,
int
NumReduceDim
,
int
NumReduceDim
,
ReduceTensorOp
ReduceOpId
,
ReduceTensorOp
ReduceOpId
,
Nan
Propagat
ion
NanOpt
,
bool
Propagat
eNan
,
ReduceTensorIndices
IndicesOpt
>
bool
UseIndex
>
void
add_device_reduce_instance_threadwise
(
void
add_device_reduce_instance_threadwise
(
std
::
vector
<
deviceReduceThreadWisePtrType
<
AccDataType
,
ReduceOpId
>>&
device_op_instances
)
std
::
vector
<
deviceReduceThreadWisePtrType
<
AccDataType
,
ReduceOpId
>>&
device_op_instances
)
{
{
...
@@ -73,9 +73,7 @@ void add_device_reduce_instance_threadwise(
...
@@ -73,9 +73,7 @@ void add_device_reduce_instance_threadwise(
constexpr
bool
Indexable
=
constexpr
bool
Indexable
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
constexpr
bool
NeedIndices
=
Indexable
&&
(
IndicesOpt
!=
ReduceTensorIndices
::
NO_INDICES
);
constexpr
bool
OutputIndex
=
Indexable
&&
UseIndex
;
constexpr
bool
PropagateNan
=
(
NanOpt
==
NanPropagation
::
NOT_PROPAGATE_NAN
)
?
false
:
true
;
using
cfg1
=
ReductionConfiguration_1
<
256
,
256
,
1
>
;
using
cfg1
=
ReductionConfiguration_1
<
256
,
256
,
1
>
;
...
@@ -93,10 +91,9 @@ void add_device_reduce_instance_threadwise(
...
@@ -93,10 +91,9 @@ void add_device_reduce_instance_threadwise(
InElementwiseOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
PropagateNan
,
NeedIndices
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
cfg1
::
BlockSize_
,
cfg1
::
BlockSize_
,
cfg1
::
MThreadClusterSize_
,
cfg1
::
KThreadClusterSize_
,
cfg2
::
MThreadSliceSize_
,
cfg2
::
MThreadSliceSize_
,
cfg2
::
KThreadSliceSize_
,
cfg2
::
KThreadSliceSize_
,
cfg2
::
InSrcVectorDim_
,
cfg2
::
InSrcVectorDim_
,
...
@@ -107,54 +104,54 @@ void add_device_reduce_instance_threadwise(
...
@@ -107,54 +104,54 @@ void add_device_reduce_instance_threadwise(
});
});
};
};
#define ADD_THREADWISE_INST_BY_TYPE( \
#define ADD_THREADWISE_INST_BY_TYPE(
\
inT, compT, outT, ReduceOpId,
NanOpt, IndicesOpt
, Rank, NumReduceDim) \
inT, compT, outT, ReduceOpId,
PropagateNan, UseIndex
, Rank, NumReduceDim) \
template void add_device_reduce_instance_threadwise<inT, \
template void add_device_reduce_instance_threadwise<inT,
\
compT, \
compT,
\
outT, \
outT,
\
Rank, \
Rank,
\
NumReduceDim, \
NumReduceDim,
\
ReduceOpId, \
ReduceOpId,
\
NanOpt,
\
PropagateNan,
\
IndicesOpt>(
\
UseIndex>(
\
std::vector<deviceReduceThreadWisePtrType<compT, ReduceOpId>> & device_op_instances)
std::vector<deviceReduceThreadWisePtrType<compT, ReduceOpId>> & device_op_instances)
#define ADD_THREADWISE_INST_BY_ID(
\
#define ADD_THREADWISE_INST_BY_ID( \
inT, compT, outT, ReduceOpId, NanOpt, IndicesOpt, Rank, NumReduceDim)
\
inT, compT, outT, ReduceOpId, NanOpt, IndicesOpt, Rank, NumReduceDim) \
ADD_THREADWISE_INST_BY_TYPE(inT,
\
ADD_THREADWISE_INST_BY_TYPE(inT, \
compT,
\
compT, \
outT,
\
outT, \
static_cast<ReduceTensorOp>(ReduceOpId),
\
static_cast<ReduceTensorOp>(ReduceOpId), \
static_cast<
NanPropagation
>(NanOpt), \
static_cast<
bool
>(NanOpt),
\
static_cast<
ReduceTensorIndices
>(IndicesOpt), \
static_cast<
bool
>(IndicesOpt),
\
Rank,
\
Rank, \
NumReduceDim)
NumReduceDim)
#define ADD_THREADWISE_INST_REF_BY_TYPE( \
#define ADD_THREADWISE_INST_REF_BY_TYPE( \
inT, compT, outT, ReduceOpId,
NanOpt, IndicesOpt
, Rank, NumReduceDim)
\
inT, compT, outT, ReduceOpId,
PropagateNan, UseIndex
, Rank, NumReduceDim) \
extern template void add_device_reduce_instance_threadwise<inT, \
extern template void add_device_reduce_instance_threadwise<inT, \
compT, \
compT, \
outT, \
outT, \
Rank, \
Rank, \
NumReduceDim, \
NumReduceDim, \
ReduceOpId, \
ReduceOpId, \
NanOpt,
\
PropagateNan,
\
IndicesOpt>(
\
UseIndex>(
\
std::vector<DeviceReducePtr< \
std::vector<DeviceReducePtr< \
typename reduce_unary_operator<compT, ReduceOpId, true, true>::InElementwiseOperation, \
typename reduce_unary_operator<compT, ReduceOpId, true, true>::InElementwiseOperation, \
typename reduce_unary_operator<compT, ReduceOpId, true, true>:: \
typename reduce_unary_operator<compT, ReduceOpId, true, true>:: \
AccElementwiseOperation>> & \
AccElementwiseOperation>> & \
device_op_instances)
device_op_instances)
#define ADD_THREADWISE_INST_REF_BY_ID(
\
#define ADD_THREADWISE_INST_REF_BY_ID( \
inT, compT, outT, ReduceOpId, NanOpt, IndicesOpt, Rank, NumReduceDim)
\
inT, compT, outT, ReduceOpId, NanOpt, IndicesOpt, Rank, NumReduceDim) \
ADD_THREADWISE_INST_REF_BY_TYPE(inT,
\
ADD_THREADWISE_INST_REF_BY_TYPE(inT, \
compT,
\
compT, \
outT,
\
outT, \
static_cast<ReduceTensorOp>(ReduceOpId),
\
static_cast<ReduceTensorOp>(ReduceOpId), \
static_cast<
NanPropagation
>(NanOpt), \
static_cast<
bool
>(NanOpt),
\
static_cast<
ReduceTensorIndices
>(IndicesOpt), \
static_cast<
bool
>(IndicesOpt),
\
Rank,
\
Rank, \
NumReduceDim)
NumReduceDim)
}
// namespace device_reduce_instance
}
// namespace device_reduce_instance
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_b16_f32_b16.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_B16_F32_B16_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_B16_F32_B16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_B16_F32_B16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_B16_F32_B16_HPP
#include "reduction_enums.hpp"
#include "data_type.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f16_f16_f16.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F16_F16_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F16_F16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F16_F16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F16_F16_HPP
#include "reduction_enums.hpp"
#include "data_type.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f16_f32_f16.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F32_F16_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F32_F16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F32_F16_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F16_F32_F16_HPP
#include "reduction_enums.hpp"
#include "data_type.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f32_f32_f32.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F32_F32_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F32_F32_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F32_F32_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F32_F32_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f32_f64_f32.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F64_F32_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F64_F32_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F64_F32_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F32_F64_F32_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_f64_f64_f64.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F64_F64_F64_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_F64_F64_F64_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F64_F64_F64_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_F64_F64_F64_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_i8_i32_i8.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I32_I8_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I32_I8_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I32_I8_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I32_I8_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_threadwise_i8_i8_i8.hpp
View file @
d8f1458f
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I8_I8_HPP
#ifndef DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I8_I8_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I8_I8_HPP
#define DEVICE_REDUCE_INSTANCE_THREADWISE_I8_I8_I8_HPP
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "device_reduce_instance_threadwise.hpp"
#include "device_reduce_instance_threadwise.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/include/ck/library/utility/check_err.hpp
View file @
d8f1458f
...
@@ -24,7 +24,7 @@ check_err(const std::vector<T>& out,
...
@@ -24,7 +24,7 @@ check_err(const std::vector<T>& out,
const
std
::
vector
<
T
>&
ref
,
const
std
::
vector
<
T
>&
ref
,
const
std
::
string
&
msg
=
"Error: Incorrect results!"
,
const
std
::
string
&
msg
=
"Error: Incorrect results!"
,
double
rtol
=
1e-5
,
double
rtol
=
1e-5
,
double
atol
=
1
e-
8
)
double
atol
=
3
e-
6
)
{
{
if
(
out
.
size
()
!=
ref
.
size
())
if
(
out
.
size
()
!=
ref
.
size
())
{
{
...
@@ -173,8 +173,8 @@ check_err(const std::vector<T>& out,
...
@@ -173,8 +173,8 @@ check_err(const std::vector<T>& out,
{
{
if
(
out
[
i
]
!=
ref
[
i
])
if
(
out
[
i
]
!=
ref
[
i
])
{
{
std
::
cout
<<
"out["
<<
i
<<
"] != ref["
<<
i
<<
"]: "
<<
out
[
i
]
<<
" != "
<<
ref
[
i
]
std
::
cout
<<
"out["
<<
i
<<
"] != ref["
<<
i
<<
"]: "
<<
static_cast
<
int
>
(
out
[
i
]
)
<<
std
::
endl
<<
" != "
<<
static_cast
<
int
>
(
ref
[
i
])
<<
std
::
endl
<<
msg
<<
std
::
endl
;
<<
msg
<<
std
::
endl
;
return
false
;
return
false
;
}
}
...
...
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
d8f1458f
include_directories
(
BEFORE
include_directories
(
BEFORE
${
PROJECT_SOURCE_DIR
}
/include/ck
${
PROJECT_SOURCE_DIR
}
/include/ck
${
PROJECT_SOURCE_DIR
}
/include/ck/utility
${
PROJECT_SOURCE_DIR
}
/include/ck/utility
${
PROJECT_SOURCE_DIR
}
/include/ck/host_utility
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor_description
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor_description
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor
${
PROJECT_SOURCE_DIR
}
/include/ck/tensor
${
PROJECT_SOURCE_DIR
}
/include/ck/problem_transform
${
PROJECT_SOURCE_DIR
}
/include/ck/problem_transform
...
...
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
d8f1458f
# device_gemm_instance
set
(
DEVICE_GEMM_INSTANCE_SOURCE
set
(
DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
...
@@ -8,10 +7,10 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
...
@@ -8,10 +7,10 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i
nt
8_i
nt
8_i
nt
8_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i
nt
8_i
nt
8_i
nt
8_mk_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i
nt
8_i
nt
8_i
nt
8_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i
nt
8_i
nt
8_i
nt
8_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp;
...
@@ -33,11 +32,21 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
...
@@ -33,11 +32,21 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp;
device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp;
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp;
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp;
device_gemm_dl_i8_i8_i8_km_kn_mn_instance.cpp;
device_gemm_dl_i8_i8_i8_km_nk_mn_instance.cpp;
)
)
add_library
(
device_gemm_instance OBJECT
${
DEVICE_GEMM_INSTANCE_SOURCE
}
)
add_library
(
device_gemm_instance OBJECT
${
DEVICE_GEMM_INSTANCE_SOURCE
}
)
target_compile_features
(
device_gemm_instance PUBLIC
)
target_compile_features
(
device_gemm_instance PUBLIC
)
set_target_properties
(
device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_gemm_instance
)
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using
device_gemm_dl_f16_f16_f16_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// #########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// #########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// #########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| Order| | |
// #########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F16
,
F16
,
F16
,
F32
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f16_f16_f16_km_kn_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using
device_gemm_dl_f16_f16_f16_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// #########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// #########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// #########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// #########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F16
,
F16
,
F16
,
F32
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f16_f16_f16_km_nk_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using
device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// #########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// #########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// #########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// #########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using
device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using
device_gemm_dl_f32_f32_f32_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F32
,
F32
,
F32
,
F32
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f32_f32_f32_km_kn_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
0 → 100644
View file @
d8f1458f
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using
device_gemm_dl_f32_f32_f32_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl
<
F32
,
F32
,
F32
,
F32
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
2
,
1
,
4
,
1
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
// clang-format on
>
;
void
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_dl_f32_f32_f32_km_nk_mn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment