"vscode:/vscode.git/clone" did not exist on "f5014889db3e8f18ea05c40b7954d5fdbabf93e2"
Commit d496f279 authored by Jing Zhang's avatar Jing Zhang
Browse files

tunied

parent ea932fd3
......@@ -66,7 +66,7 @@ else()
-Wunreachable-code
-Wunused
-Wno-reserved-identifier
-Werror
#-Werror
-Wno-option-ignored
-Wsign-compare
-Wno-extra-semi-stmt
......
......@@ -10,6 +10,9 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16)
add_example_executable(example_splitK_gemm_xdl_fp16_fp8 splitK_gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16_fp8)
add_example_executable(example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16)
......
......@@ -157,7 +157,7 @@ bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& con
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float ave_time = invoker.Run(argument, StreamConfig{nullptr, true, 0, 300, 1000});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......@@ -165,7 +165,7 @@ bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& con
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
std::cout << ">>> Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
......
......@@ -21,7 +21,6 @@
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
......@@ -31,7 +30,7 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using BDataType = F16;
using AccDataType = F32;
using CDataType = F16;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = ck::f8_t;
using AccDataType = F32;
using CDataType = F16;
using ALayout = Row;
using BLayout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
///< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16, ck::PipelineVersion::v1, ck::LoopScheduler::Interwave>;
///< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 128, 16, 128, 4, 8, 16, 16, 1, 4, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16, ck::PipelineVersion::v1, ck::LoopScheduler::Interwave>;
///< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 128, 16, 256, 4, 8, 16, 16, 1, 8, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16, ck::PipelineVersion::v1, ck::LoopScheduler::Interwave>;
///< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 16, 256, 4, 8, 16, 16, 1, 4, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16, ck::PipelineVersion::v1, ck::LoopScheduler::Interwave>;
///< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 16, 512, 4, 8, 16, 16, 1, 8, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16, ck::PipelineVersion::v1, ck::LoopScheduler::Interwave>;
// clang-format on
#include "run_splitK_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_splitK_gemm_example(argc, argv); }
......@@ -226,7 +226,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
if(has_main_k0_block_loop)
{
if(kbatch == 1)
//if(kbatch == 1)
{
const auto kernel =
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
......@@ -239,6 +239,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
Run(kernel);
}
#if 0
else
{
const auto kernel =
......@@ -252,10 +253,11 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
Run(kernel);
}
#endif
}
else
{
if(kbatch == 1)
//if(kbatch == 1)
{
const auto kernel =
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
......@@ -268,6 +270,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
Run(kernel);
}
#if 0
else
{
const auto kernel =
......@@ -281,6 +284,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
Run(kernel);
}
#endif
}
return ave_time;
......
......@@ -198,7 +198,7 @@ struct PassThrough
__host__ __device__ void operator()<half_t, f8_t>(half_t& y, const f8_t& x) const
{
const uint16_t tmp = bit_cast<uint8_t>(x);
y = bit_cast<half_t>(tmp);
y = static_cast<half_t>(tmp);
// y = type_convert<half_t>(x);
}
......
......@@ -129,6 +129,7 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
DeviceGemmSplitK<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
#if 0
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_generic_instances{});
......@@ -138,6 +139,7 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances<GemmMNPadding>{});
#endif
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances<GemmMNKPadding>{});
......
......@@ -101,6 +101,7 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
DeviceGemmSplitK<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
#if 0
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_generic_instances{});
......@@ -109,6 +110,7 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances<GemmMNPadding>{});
#endif
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances<GemmMNKPadding>{});
......
......@@ -27,8 +27,9 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_generic_instances = std::tuple<
......@@ -130,6 +131,7 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances(
DeviceGemmSplitK<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
#if 0
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_generic_instances{});
......@@ -138,6 +140,7 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances(
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances<GemmMNPadding>{});
#endif
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances<GemmMNKPadding>{});
......
......@@ -102,6 +102,7 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances(
DeviceGemmSplitK<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
#if 0
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_generic_instances{});
......@@ -110,6 +111,7 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances(
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances<GemmMNPadding>{});
#endif
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances<GemmMNKPadding>{});
......
......@@ -116,6 +116,7 @@ void add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances(
DeviceGemmSplitK<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
#if 0
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_generic_instances{});
......@@ -124,6 +125,7 @@ void add_device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances(
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances<GemmMNPadding>{});
#endif
add_device_operation_instances(
instances, device_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_instances<GemmMNKPadding>{});
......
......@@ -6,6 +6,7 @@
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include <unistd.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
......@@ -134,11 +135,10 @@ bool profile_gemm_splitk_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
int best_instance_id = 0;
float best_kbatch = 0;
int instance_id = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
......@@ -200,8 +200,8 @@ bool profile_gemm_splitk_impl(int do_verification,
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, time_kernel, 0, 50, 200});
std::size_t flop = std::size_t(2) * M * N * K;
......@@ -237,11 +237,9 @@ bool profile_gemm_splitk_impl(int do_verification,
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
best_instance_id = instance_id;
}
}
else
......@@ -250,7 +248,69 @@ bool profile_gemm_splitk_impl(int do_verification,
<< std::endl;
}
}
instance_id++;
}
sleep(2);
{
auto& op_ptr = op_ptrs[best_instance_id];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
best_kbatch);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, time_kernel, 0, 100, 500});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
if constexpr(is_same<CDataType, float>::value)
{
......@@ -288,9 +348,11 @@ bool profile_gemm_splitk_impl(int do_verification,
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " KBatch = " << best_kbatch
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
<< " StrideB = " << StrideB << " StrideC = " << StrideC
<< " KBatch = " << best_kbatch << " : " << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << std::endl;
}
}
return pass;
}
......
......@@ -11,7 +11,7 @@ cmake
-D CMAKE_CXX_FLAGS="--save-temps -std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx90a" \
-D GPU_TARGETS="gfx942" \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
${MY_PROJECT_SOURCE}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment