Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d4585acc
Commit
d4585acc
authored
Aug 10, 2022
by
Jing Zhang
Browse files
add examples into grouped/batched_gemm
parent
aba7fefc
Changes
12
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
1209 additions
and
64 deletions
+1209
-64
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+3
-0
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
+252
-0
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
+252
-0
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
+249
-0
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+4
-0
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
example/24_batched_gemm/batched_gemm_xdl_bfp16.cpp
+22
-55
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
example/24_batched_gemm/batched_gemm_xdl_fp16.cpp
+0
-2
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
example/24_batched_gemm/batched_gemm_xdl_fp32.cpp
+214
-0
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
+212
-0
example/24_batched_gemm_e_permute/CMakeLists.txt
example/24_batched_gemm_e_permute/CMakeLists.txt
+0
-2
example/29_batched_gemm_multi_d/CMakeLists.txt
example/29_batched_gemm_multi_d/CMakeLists.txt
+0
-3
example/CMakeLists.txt
example/CMakeLists.txt
+1
-2
No files found.
example/15_grouped_gemm/CMakeLists.txt
View file @
d4585acc
add_example_executable
(
example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp
)
example/15_grouped_gemm/grouped_gemm_xdl_bfp16.cpp
0 → 100644
View file @
d4585acc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
example/15_grouped_gemm/grouped_gemm_xdl_fp32.cpp
0 → 100644
View file @
d4585acc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
example/15_grouped_gemm/grouped_gemm_xdl_int8.cpp
0 → 100644
View file @
d4585acc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
128
+
128
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
example/24_batched_gemm/CMakeLists.txt
0 → 100644
View file @
d4585acc
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
example/2
9
_batched_gemm
_multi_d
/batched_gemm_
bias_
xdl_fp16.cpp
→
example/2
4
_batched_gemm/batched_gemm_xdl_
b
fp16.cpp
View file @
d4585acc
...
@@ -7,7 +7,7 @@
...
@@ -7,7 +7,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/
binary_
element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -18,36 +18,31 @@
...
@@ -18,36 +18,31 @@
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
B
F16
=
ck
::
b
half_t
;
using
F32
=
float
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
ADataType
=
B
F16
;
using
BDataType
=
F16
;
using
BDataType
=
B
F16
;
using
AccDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
CShuffleDataType
=
BF16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
BF16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<
DLayout
>
;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
...
@@ -58,6 +53,9 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD
...
@@ -58,6 +53,9 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -70,13 +68,11 @@ int main(int argc, char* argv[])
...
@@ -70,13 +68,11 @@ int main(int argc, char* argv[])
const
int
stride_A
=
K
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
stride_B
=
K
;
const
int
stride_D
=
0
;
const
int
stride_C
=
N
;
const
int
stride_E
=
N
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_B
=
K
*
N
;
const
int
batch_stride_B
=
K
*
N
;
const
int
batch_stride_D
=
N
;
const
int
batch_stride_C
=
M
*
N
;
const
int
batch_stride_E
=
M
*
N
;
const
int
batch_count
=
16
;
const
int
batch_count
=
16
;
...
@@ -118,15 +114,11 @@ int main(int argc, char* argv[])
...
@@ -118,15 +114,11 @@ int main(int argc, char* argv[])
Tensor
<
BDataType
>
b_g_k_n
(
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
DDataType
>
d_g_m_n
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_D
,
batch_stride_D
,
DLayout
{}));
Tensor
<
EDataType
>
e_g_m_n_device_result
(
Tensor
<
EDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_
E
,
batch_stride_
E
,
ELayout
{}));
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_
C
,
batch_stride_
C
,
ELayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_g_m_n: "
<<
d_g_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
init_method
)
...
@@ -135,23 +127,19 @@ int main(int argc, char* argv[])
...
@@ -135,23 +127,19 @@ int main(int argc, char* argv[])
case
1
:
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_g_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
break
;
default:
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_g_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_g_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_g_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
b_element_op
=
BElementOp
{};
...
@@ -163,7 +151,7 @@ int main(int argc, char* argv[])
...
@@ -163,7 +151,7 @@ int main(int argc, char* argv[])
// do GEMM
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d_device_buf
.
GetDeviceBuffer
()
},
{},
c_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
...
@@ -171,12 +159,12 @@ int main(int argc, char* argv[])
...
@@ -171,12 +159,12 @@ int main(int argc, char* argv[])
batch_count
,
batch_count
,
stride_A
,
stride_A
,
stride_B
,
stride_B
,
{
stride_D
},
{},
stride_
E
,
stride_
C
,
batch_stride_A
,
batch_stride_A
,
batch_stride_B
,
batch_stride_B
,
{
batch_stride_D
},
{},
batch_stride_
E
,
batch_stride_
C
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
cde_element_op
);
cde_element_op
);
...
@@ -208,38 +196,17 @@ int main(int argc, char* argv[])
...
@@ -208,38 +196,17 @@ int main(int argc, char* argv[])
{
{
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
e_g_m_n_host_result
(
Tensor
<
EDataType
>
e_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_
E
,
batch_stride_
E
,
ELayout
{}));
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_
C
,
batch_stride_
C
,
ELayout
{}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
e_g_m_n_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{}
);
a_g_m_k
,
b_g_k_n
,
e_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
g
=
0
;
g
<
batch_count
;
g
++
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_g_m_n_host_result
(
g
,
m
,
n
),
e_g_m_n_host_result
(
g
,
m
,
n
),
d_g_m_n
(
g
,
m
,
n
));
}
}
}
pass
=
ck
::
utils
::
check_err
(
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_host_result
.
mData
,
e_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
e_g_m_n_host_result
.
mData
,
e_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
}
...
...
example/2
9
_batched_gemm
_multi_d
/batched_gemm_xdl_fp16.cpp
→
example/2
4
_batched_gemm/batched_gemm_xdl_fp16.cpp
View file @
d4585acc
...
@@ -43,8 +43,6 @@ using BElementOp = PassThrough;
...
@@ -43,8 +43,6 @@ using BElementOp = PassThrough;
using
CDEElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
...
...
example/24_batched_gemm
_e_permute
/batched_gemm_
e_permute_
xdl_fp
16
.cpp
→
example/24_batched_gemm/batched_gemm_xdl_fp
32
.cpp
View file @
d4585acc
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_
e_permute
_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_
multi_d
_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -18,7 +18,6 @@
...
@@ -18,7 +18,6 @@
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
...
@@ -26,14 +25,16 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
...
@@ -26,14 +25,16 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F
16
;
using
ADataType
=
F
32
;
using
BDataType
=
F
16
;
using
BDataType
=
F
32
;
using
AccDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
CShuffleDataType
=
F32
;
using
EDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
...
@@ -42,13 +43,13 @@ using CDEElementOp = PassThrough;
...
@@ -42,13 +43,13 @@ using CDEElementOp = PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmEPermuteXdl
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| ALayout| BLayout|
DsLayout|
ELayout| AData| BData| AccData| CShuffle|
DsData|
EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | |
|
| Type| Type| Type| DataType|
Type|
Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | |
|
| | | | |
|
| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | |
|
| | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
...
@@ -60,26 +61,19 @@ int main(int argc, char* argv[])
...
@@ -60,26 +61,19 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
const
int
M
=
256
;
const
int
M
=
256
*
(
rand
()
%
16
+
1
)
;
const
int
N
=
128
;
const
int
N
=
128
*
(
rand
()
%
16
+
1
)
;
const
int
K
=
64
;
const
int
K
=
64
*
(
rand
()
%
16
+
1
)
;
const
int
stride_A
=
K
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
stride_B
=
K
;
const
int
stride_C
=
N
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_B
=
K
*
N
;
const
int
batch_stride_B
=
K
*
N
;
const
int
batch_stride_C
=
M
*
N
;
const
int
G0
=
16
;
const
int
batch_count
=
16
;
const
int
G1
=
8
;
const
int
batch_count
=
G0
*
G1
;
// output layout - [G0, M, G1, N]
const
int
stride_G0
=
M
*
G1
*
N
;
const
int
stride_G1
=
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_N
=
1
;
if
(
argc
==
4
)
if
(
argc
==
4
)
{
{
...
@@ -96,9 +90,6 @@ int main(int argc, char* argv[])
...
@@ -96,9 +90,6 @@ int main(int argc, char* argv[])
}
}
// GEMM shape
// GEMM shape
ck
::
tensor_operation
::
device
::
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
{
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
col
,
...
@@ -122,28 +113,12 @@ int main(int argc, char* argv[])
...
@@ -122,28 +113,12 @@ int main(int argc, char* argv[])
Tensor
<
BDataType
>
b_g_k_n
(
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
auto
f_host_e_tensor_descriptor
=
[](
std
::
size_t
G0_
,
Tensor
<
EDataType
>
e_g_m_n_device_result
(
std
::
size_t
G1_
,
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
std
::
size_t
M_
,
std
::
size_t
N_
,
std
::
size_t
stride_G0_
,
std
::
size_t
stride_G1_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_N_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
G0_
,
G1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
stride_G0_
,
stride_G1_
,
stride_M_
,
stride_N_
}));
};
Tensor
<
EDataType
>
e_g0_g1_m_n_host_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
Tensor
<
EDataType
>
e_g0_g1_m_n_device_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g
0_g1
_m_n: "
<<
e_g
0_g1
_m_n_
host
_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_
device
_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
@@ -160,8 +135,7 @@ int main(int argc, char* argv[])
...
@@ -160,8 +135,7 @@ int main(int argc, char* argv[])
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
e_g0_g1_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
...
@@ -173,19 +147,23 @@ int main(int argc, char* argv[])
...
@@ -173,19 +147,23 @@ int main(int argc, char* argv[])
auto
gemm
=
DeviceGemmInstance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEM
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
b_device_buf
.
GetDeviceBuffer
(),
static_cast
<
EDataType
*>
(
e_device_buf
.
GetDeviceBuffer
()),
{},
c_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
K
,
K
,
batch_count
,
stride_A
,
stride_A
,
stride_B
,
stride_B
,
{},
stride_C
,
batch_stride_A
,
batch_stride_A
,
batch_stride_B
,
batch_stride_B
,
batched_gemm_e_permute_desc
,
{}
,
batch_
count
,
batch_
stride_C
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
cde_element_op
);
cde_element_op
);
...
@@ -215,38 +193,21 @@ int main(int argc, char* argv[])
...
@@ -215,38 +193,21 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
e
_device_buf
.
FromDevice
(
e_g
0_g1
_m_n_device_result
.
mData
.
data
());
c
_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
c
_g_m_n_host_result
=
HostTensorDescriptor
(
Tensor
<
EDataType
>
e
_g_m_n_host_result
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
M
,
N
})
,
st
d
::
vector
<
std
::
size_t
>
({
M
*
N
,
N
,
1
}));
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
st
ride_C
,
batch_stride_C
,
ELayout
{
}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c
_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
a_g_m_k
,
b_g_k_n
,
e
_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
g0
=
0
;
g0
<
G0
;
g0
++
)
pass
=
ck
::
utils
::
check_err
(
{
e_g_m_n_host_result
.
mData
,
e_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
for
(
int
g1
=
0
;
g1
<
G1
;
g1
++
)
{
for
(
int
m
=
0
;
m
<
M
;
m
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
int
g
=
g0
*
G1
+
g1
;
e_g0_g1_m_n_host_result
(
g0
,
g1
,
m
,
n
)
=
c_g_m_n_host_result
(
g
,
m
,
n
);
}
}
}
}
pass
=
ck
::
utils
::
check_err
(
e_g0_g1_m_n_host_result
.
mData
,
e_g0_g1_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
}
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
...
...
example/24_batched_gemm/batched_gemm_xdl_int8.cpp
0 → 100644
View file @
d4585acc
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
const
int
M
=
256
*
(
rand
()
%
16
+
1
);
const
int
N
=
128
*
(
rand
()
%
16
+
1
);
const
int
K
=
64
*
(
rand
()
%
16
+
1
);
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
stride_C
=
N
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_B
=
K
*
N
;
const
int
batch_stride_C
=
M
*
N
;
const
int
batch_count
=
16
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
// GEMM shape
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
EDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
batch_count
,
stride_A
,
stride_B
,
{},
stride_C
,
batch_stride_A
,
batch_stride_B
,
{},
batch_stride_C
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
e_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
e_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_host_result
.
mData
,
e_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
return
pass
?
0
:
1
;
}
example/24_batched_gemm_e_permute/CMakeLists.txt
deleted
100644 → 0
View file @
aba7fefc
add_example_executable
(
example_batched_gemm_e_permute_xdl_fp16 batched_gemm_e_permute_xdl_fp16.cpp
)
example/29_batched_gemm_multi_d/CMakeLists.txt
deleted
100644 → 0
View file @
aba7fefc
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_bias_xdl_fp16 batched_gemm_bias_xdl_fp16.cpp
)
example/CMakeLists.txt
View file @
d4585acc
...
@@ -38,10 +38,9 @@ add_subdirectory(20_convnd_bwd_weight)
...
@@ -38,10 +38,9 @@ add_subdirectory(20_convnd_bwd_weight)
add_subdirectory
(
21_gemm_layernorm
)
add_subdirectory
(
21_gemm_layernorm
)
add_subdirectory
(
22_cgemm
)
add_subdirectory
(
22_cgemm
)
add_subdirectory
(
23_softmax
)
add_subdirectory
(
23_softmax
)
add_subdirectory
(
24_batched_gemm
_e_permute
)
add_subdirectory
(
24_batched_gemm
)
add_subdirectory
(
25_gemm_bias_e_permute
)
add_subdirectory
(
25_gemm_bias_e_permute
)
add_subdirectory
(
26_contraction
)
add_subdirectory
(
26_contraction
)
add_subdirectory
(
27_layernorm
)
add_subdirectory
(
27_layernorm
)
add_subdirectory
(
28_grouped_gemm_bias
)
add_subdirectory
(
28_grouped_gemm_bias
)
add_subdirectory
(
29_batched_gemm_multi_d
)
add_subdirectory
(
30_grouped_convnd_fwd_bias_relu
)
add_subdirectory
(
30_grouped_convnd_fwd_bias_relu
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment