Commit d44f6660 authored by aska-0096's avatar aska-0096
Browse files

deprecate inline asm wmma

parent 823c8801
......@@ -39,7 +39,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC;
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
......@@ -56,24 +56,24 @@ using DeviceConvFwdInstance =
64, // MPerBlock
64, // NPerBlock
64, // KPerBlock
4, // K1
8, // K1
16, // MPerWMMA
16, // NPerWMMA
4, // MRepeat
1, // NRepeat
S<4, 8, 4>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<4, 32, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
1, // ABlockTransferDstScalarPerVector_AK1
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
true, // ABlockLdsExtraM
S<4, 8, 4>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<4, 32, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
1, // BBlockTransferDstScalarPerVector_BK1
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
true, // BBlockLdsExtraN
1,
1,
......@@ -278,9 +278,9 @@ bool run_grouped_conv_fwd_bias_relu_add_example(int argc, char* argv[])
switch(conv_param.num_dim_spatial_)
{
case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
// case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case 2: return run_grouped_conv_fwd_bias_relu_add<2>(config, conv_param);
case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
// case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
}
return false;
......
......@@ -67,7 +67,8 @@ static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecial
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
using DeviceMHAFactory =
std::tuple<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG,
NumDimM,
......@@ -99,7 +100,8 @@ using DeviceGemmInstance =
128, // MPerBlock
64, // LPerBlock
64, // KPerBlock
8, // K1
8, // AK1
8, // BK1
// Gemm 1
64, // NPerBlock
64, // LTilePerBlock
......@@ -136,8 +138,8 @@ using DeviceGemmInstance =
2, // CShuffleNWmmaPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
MaskingSpec> // MaskingSpecialization
>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
......
......@@ -70,7 +70,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
......
......@@ -530,509 +530,4 @@ struct BlockwiseGemmWMMA
typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
};
// block wise level pipe designed for inline asm
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool TransposeC = false,
bool AssemblyBackend = true>
/* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*/
struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr index_t KPerBlock =
BK0NK1BlockDesc{}.GetLength(I0) * BK0NK1BlockDesc{}.GetLength(I2);
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BK0NK1BlockDesc{}.GetLength(I2);
static constexpr auto wmma_gemm = WmmaGemm<FloatA,
FloatB,
FloatAcc,
MPerWMMA,
NPerWMMA,
KPack,
TransposeC,
AssemblyBackend>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
wmma_gemm.GetRegSizePerWmma(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |MLane |KPack
return make_tuple(0, 0, waveId_m, WMMA_a_idx, 0);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return make_tuple(0, 0, waveId_n, WMMA_b_idx, 0);
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
NPerBlock % (NPerWMMA * NRepeat) == 0,
"wrong!");
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I0];
constexpr auto NThreadPerSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I1];
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{},
I1,
MSubGroup,
Number<NRepeat>{},
I1,
NThreadPerSubGroup,
MAccVgprs));
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(
make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
}
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_K0_M0_M1_M2_K1()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<A_K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWMMA>{})),
make_pass_through_transform(Number<A_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
__host__ __device__ static constexpr auto MakeBBlockDescriptor_K0_N0_N1_N2_K1()
{
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<B_K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWMMA>{})),
make_pass_through_transform(Number<B_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr auto a_block_desc_k0_m0_m1_m2_k1 = MakeABlockDescriptor_K0_M0_M1_M2_K1();
static constexpr auto b_block_desc_k0_n0_n1_n2_k1 = MakeBBlockDescriptor_K0_N0_N1_N2_K1();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_.GetElementSpaceSize());
// TODO: Fix it, MRepeat < NRepeat
constexpr auto RepeatDiff = MRepeat - NRepeat;
// Read all Mrepeat, Nrepeat
static_for<0, NRepeat, 1>{}([&](auto iN) {
b_thread_copy_.Run(b_block_desc_k0_n0_n1_n2_k1,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_thread_buf);
});
static_for<0, MRepeat, 1>{}([&](auto iM) {
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
// Read Consumed Next inner loop A
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<WmmaK / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
static_for<WmmaK, KPerBlock, WmmaK>{}([&](auto iWmmaK) {
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(make_tuple(
iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset = c_thread_desc_.CalculateOffset(
make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(
Number<iWmmaK / A_K1>{}, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_thread_buf);
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<iWmmaK / B_K1>{}, Number<WmmaInnerloop>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop>{}, I0, I0, I0),
b_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<(iWmmaK + WmmaK) / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
});
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
});
}
protected:
// A[M0, M1, M2, K0 = WmmaK]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / A_K1>{}, Number<MRepeat>{}, I1, I1, Number<A_K1>{}));
// B[N0, N1, N2, K0 = WmmaK]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / B_K1>{}, Number<NRepeat>{}, I1, I1, Number<B_K1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<WmmaK / A_K1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<WmmaK / B_K1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
};
} // namespace ck
......@@ -175,8 +175,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
static constexpr auto BEnableLds_auto = MWaves == 1 ? false : true;
// If true, LDS is used unconditionally
static constexpr auto AEnableLds_manu = false;
static constexpr auto BEnableLds_manu = false;
static constexpr auto AEnableLds_manu = true;
static constexpr auto BEnableLds_manu = true;
static constexpr auto AEnableLds =
AEnableLds_auto || AEnableLds_manu || (NumGemmKPrefetchStage > 1);
......
......@@ -355,17 +355,5 @@ __device__ void amd_assembly_outer_product_1x4(int8x16_t a,
c3);
}
// Ranged input operand
__device__ void amd_assembly_wmma_f32_16x16x16_f16_w32(half16_t a, half16_t b, float8_t& c)
{
#if defined(__gfx11__)
asm volatile("v_wmma_f32_16x16x16_f16 %0, %1, %2, %0" : "=v"(c) : "v"(a), "v"(b), "0"(c));
#else
ignore = a;
ignore = b;
ignore = c;
#endif
}
} // namespace ck
#endif
......@@ -21,10 +21,6 @@ struct intrin_wmma_f32_16x16x16_f16_w32<16, 16>
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
// * Inline assembly need to elimate the duplicated data load, compiler won't help you
// delete them.
// amd_assembly_wmma_f32_16x16x16_f16_w32(
// reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment