Unverified Commit d3cd6f41 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-987

parents e84c2a33 98fd41f5
...@@ -23,6 +23,7 @@ template <ck::index_t NumDimM, ...@@ -23,6 +23,7 @@ template <ck::index_t NumDimM,
typename BDataType, typename BDataType,
typename CDataType, typename CDataType,
typename AccDataType, typename AccDataType,
typename ComputeDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false> ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
...@@ -69,19 +70,24 @@ struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::Base ...@@ -69,19 +70,24 @@ struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::Base
{ {
for(ck::index_t k1 = 0; k1 < K1; ++k1) for(ck::index_t k1 = 0; k1 < K1; ++k1)
{ {
// Simulate the possible casting when ComputeDataType is different than the
// A/B data types
ComputeDataType v_a_compute_input =
ck::type_convert<ComputeDataType>(arg.a_ms_ks_(m0, m1, k0, k1));
ComputeDataType v_b_compute_input =
ck::type_convert<ComputeDataType>(arg.b_ns_ks_(n0, n1, k0, k1));
AccDataType v_a; AccDataType v_a;
AccDataType v_b; AccDataType v_b;
arg.a_element_op_( arg.a_element_op_(v_a, ck::type_convert<AccDataType>(v_a_compute_input));
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1))); arg.b_element_op_(v_b, ck::type_convert<AccDataType>(v_b_compute_input));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b; v_acc += v_a * v_b;
} }
} }
arg.c_ms_ns_(m0, m1, n0, n1) = v_acc; arg.c_ms_ns_(m0, m1, n0, n1) = ck::type_convert<CDataType>(v_acc);
}; };
make_ParallelTensorFunctor(f_ms_ns, make_ParallelTensorFunctor(f_ms_ns,
......
...@@ -42,6 +42,7 @@ template <ck::index_t NDimSpatial, ...@@ -42,6 +42,7 @@ template <ck::index_t NDimSpatial,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation, typename OutElementwiseOperation,
ck::index_t NumDTensor = 0,
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false> typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceConvFwd : public device::BaseOperator struct ReferenceConvFwd : public device::BaseOperator
{ {
...@@ -57,10 +58,12 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -57,10 +58,12 @@ struct ReferenceConvFwd : public device::BaseOperator
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op, WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) OutElementwiseOperation out_element_op,
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors)
: input_{input}, : input_{input},
weight_{weight}, weight_{weight},
output_{output}, output_{output},
d_tensors_{d_tensors},
conv_strides_{conv_filter_strides}, conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations}, conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads}, in_left_pads_{input_left_pads},
...@@ -75,6 +78,8 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -75,6 +78,8 @@ struct ReferenceConvFwd : public device::BaseOperator
const Tensor<WeiDataType>& weight_; const Tensor<WeiDataType>& weight_;
Tensor<OutDataType>& output_; Tensor<OutDataType>& output_;
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors_;
std::vector<index_t> conv_strides_; std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_; std::vector<index_t> conv_dilations_;
std::vector<index_t> in_left_pads_; std::vector<index_t> in_left_pads_;
...@@ -129,7 +134,26 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -129,7 +134,26 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
OutDataType v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc)); OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, wo),
arg.d_tensors_[1](g, n, k, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, wo) = v_out; arg.output_(g, n, k, wo) = v_out;
}; };
...@@ -183,7 +207,27 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -183,7 +207,27 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
OutDataType v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc)); OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(
v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, ho, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, ho, wo),
arg.d_tensors_[1](g, n, k, ho, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, ho, wo) = v_out; arg.output_(g, n, k, ho, wo) = v_out;
}; };
...@@ -250,7 +294,27 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -250,7 +294,27 @@ struct ReferenceConvFwd : public device::BaseOperator
} }
OutDataType v_out; OutDataType v_out;
arg.out_element_op_(v_out, ck::type_convert<OutDataType>(v_acc)); OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(
v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, d_o, ho, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, d_o, ho, wo),
arg.d_tensors_[1](g, n, k, d_o, ho, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, d_o, ho, wo) = v_out; arg.output_(g, n, k, d_o, ho, wo) = v_out;
}; };
...@@ -294,7 +358,8 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -294,7 +358,8 @@ struct ReferenceConvFwd : public device::BaseOperator
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op, WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) OutElementwiseOperation out_element_op,
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors = {})
{ {
return Argument{input, return Argument{input,
weight, weight,
...@@ -305,7 +370,8 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -305,7 +370,8 @@ struct ReferenceConvFwd : public device::BaseOperator
input_right_pads, input_right_pads,
in_element_op, in_element_op,
wei_element_op, wei_element_op,
out_element_op}; out_element_op,
d_tensors};
} }
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
......
...@@ -25,6 +25,8 @@ using BF8 = ck::bf8_t; ...@@ -25,6 +25,8 @@ using BF8 = ck::bf8_t;
using Empty_Tuple = ck::Tuple<>; using Empty_Tuple = ck::Tuple<>;
using BF16_Tuple = ck::Tuple<BF16>;
using F16_Tuple = ck::Tuple<F16>; using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>; using F16_F16_Tuple = ck::Tuple<F16, F16>;
......
...@@ -328,7 +328,18 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances( ...@@ -328,7 +328,18 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances(
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances( void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances); DeviceGemm<Row, Col, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances);
void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
#endif #endif
template <typename ALayout, template <typename ALayout,
typename BLayout, typename BLayout,
typename CLayout, typename CLayout,
...@@ -548,6 +559,20 @@ struct DeviceOperationInstanceFactory< ...@@ -548,6 +559,20 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances(op_ptrs);
} }
} }
else if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::f8_t> &&
is_same_v<CDataType, ck::half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(op_ptrs);
}
}
#endif #endif
return op_ptrs; return op_ptrs;
} }
......
...@@ -120,6 +120,32 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances ...@@ -120,6 +120,32 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F8,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F8,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout, template <typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
...@@ -184,6 +210,24 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -184,6 +210,24 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs); add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
} }
} }
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances(op_ptrs);
}
}
return op_ptrs; return op_ptrs;
} }
}; };
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment