Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d3bd5922
Commit
d3bd5922
authored
Dec 20, 2021
by
Chao Liu
Browse files
added conv+bias+relu+atomic_add
parent
7dba659f
Changes
13
Show whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
1000 additions
and
38 deletions
+1000
-38
composable_kernel/include/utility/amd_buffer_addressing.hpp
composable_kernel/include/utility/amd_buffer_addressing.hpp
+56
-9
device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp
...ffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp
+65
-0
device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
...d_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
+19
-17
device_operation/include/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp
...nv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp
+2
-1
example/5_conv2d_fwd_xdl_c_shuffle_bias_relu/conv2d_fwd_xdl_c_shuffle_bias_relu.cpp
..._shuffle_bias_relu/conv2d_fwd_xdl_c_shuffle_bias_relu.cpp
+7
-5
example/7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/README.md
...7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/README.md
+61
-0
example/7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add.cpp
...mic_add/conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add.cpp
+309
-0
example/CMakeLists.txt
example/CMakeLists.txt
+3
-0
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+19
-1
profiler/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
...er/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
+328
-0
profiler/include/profile_conv_fwd_impl.hpp
profiler/include/profile_conv_fwd_impl.hpp
+4
-0
profiler/profile_conv_fwd_bias_relu_atomic_add.cpp
profiler/profile_conv_fwd_bias_relu_atomic_add.cpp
+116
-0
profiler/profiler.cpp
profiler/profiler.cpp
+11
-5
No files found.
composable_kernel/include/utility/amd_buffer_addressing.hpp
View file @
d3bd5922
...
@@ -31,7 +31,7 @@ __device__ int32x4_t make_wave_buffer_resource(T* p_wave, index_t element_space_
...
@@ -31,7 +31,7 @@ __device__ int32x4_t make_wave_buffer_resource(T* p_wave, index_t element_space_
return
wave_buffer_resource
.
content
;
return
wave_buffer_resource
.
content
;
}
}
// load
//
buffer
load
i8
__device__
int8_t
__device__
int8_t
llvm_amdgcn_raw_buffer_load_i8
(
int32x4_t
srsrc
,
llvm_amdgcn_raw_buffer_load_i8
(
int32x4_t
srsrc
,
index_t
voffset
,
index_t
voffset
,
...
@@ -50,6 +50,7 @@ llvm_amdgcn_raw_buffer_load_i8x4(int32x4_t srsrc,
...
@@ -50,6 +50,7 @@ llvm_amdgcn_raw_buffer_load_i8x4(int32x4_t srsrc,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i8"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i8"
);
// buffer load i16
__device__
ushort
__device__
ushort
llvm_amdgcn_raw_buffer_load_i16
(
int32x4_t
srsrc
,
llvm_amdgcn_raw_buffer_load_i16
(
int32x4_t
srsrc
,
index_t
voffset
,
index_t
voffset
,
...
@@ -68,6 +69,7 @@ llvm_amdgcn_raw_buffer_load_i16x4(int32x4_t srsrc,
...
@@ -68,6 +69,7 @@ llvm_amdgcn_raw_buffer_load_i16x4(int32x4_t srsrc,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i16"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i16"
);
// buffer load i32
__device__
int32_t
__device__
int32_t
llvm_amdgcn_raw_buffer_load_i32
(
int32x4_t
srsrc
,
llvm_amdgcn_raw_buffer_load_i32
(
int32x4_t
srsrc
,
index_t
voffset
,
index_t
voffset
,
...
@@ -85,7 +87,7 @@ llvm_amdgcn_raw_buffer_load_i32x4(int32x4_t srsrc,
...
@@ -85,7 +87,7 @@ llvm_amdgcn_raw_buffer_load_i32x4(int32x4_t srsrc,
index_t
voffset
,
index_t
voffset
,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i32"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4i32"
);
//
half
//
buffer load fp16
__device__
half_t
__device__
half_t
llvm_amdgcn_raw_buffer_load_fp16
(
int32x4_t
srsrc
,
llvm_amdgcn_raw_buffer_load_fp16
(
int32x4_t
srsrc
,
index_t
voffset
,
index_t
voffset
,
...
@@ -104,7 +106,7 @@ llvm_amdgcn_raw_buffer_load_fp16x4(int32x4_t srsrc,
...
@@ -104,7 +106,7 @@ llvm_amdgcn_raw_buffer_load_fp16x4(int32x4_t srsrc,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4f16"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4f16"
);
//
float
//
buffer load fp32
__device__
float
__device__
float
llvm_amdgcn_raw_buffer_load_fp32
(
int32x4_t
srsrc
,
llvm_amdgcn_raw_buffer_load_fp32
(
int32x4_t
srsrc
,
index_t
voffset
,
index_t
voffset
,
...
@@ -123,7 +125,7 @@ llvm_amdgcn_raw_buffer_load_fp32x4(int32x4_t srsrc,
...
@@ -123,7 +125,7 @@ llvm_amdgcn_raw_buffer_load_fp32x4(int32x4_t srsrc,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4f32"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.load.v4f32"
);
// store
//
buffer
store
i8
__device__
void
__device__
void
llvm_amdgcn_raw_buffer_store_i8
(
int8_t
vdata
,
llvm_amdgcn_raw_buffer_store_i8
(
int8_t
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -145,6 +147,7 @@ llvm_amdgcn_raw_buffer_store_i8x4(int8x4_t vdata,
...
@@ -145,6 +147,7 @@ llvm_amdgcn_raw_buffer_store_i8x4(int8x4_t vdata,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i8"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i8"
);
// buffer store i16
__device__
void
__device__
void
llvm_amdgcn_raw_buffer_store_i16
(
ushort
vdata
,
llvm_amdgcn_raw_buffer_store_i16
(
ushort
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -166,6 +169,7 @@ llvm_amdgcn_raw_buffer_store_i16x4(ushort4_t vdata,
...
@@ -166,6 +169,7 @@ llvm_amdgcn_raw_buffer_store_i16x4(ushort4_t vdata,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i16"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i16"
);
// buffer store i32
__device__
void
__device__
void
llvm_amdgcn_raw_buffer_store_i32
(
int32_t
vdata
,
llvm_amdgcn_raw_buffer_store_i32
(
int32_t
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -187,7 +191,7 @@ llvm_amdgcn_raw_buffer_store_i32x4(int32x4_t vdata,
...
@@ -187,7 +191,7 @@ llvm_amdgcn_raw_buffer_store_i32x4(int32x4_t vdata,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i32"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4i32"
);
//
half
//
buffer store fp16
__device__
void
__device__
void
llvm_amdgcn_raw_buffer_store_fp16
(
half_t
vdata
,
llvm_amdgcn_raw_buffer_store_fp16
(
half_t
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -208,7 +212,7 @@ llvm_amdgcn_raw_buffer_store_fp16x4(half4_t vdata,
...
@@ -208,7 +212,7 @@ llvm_amdgcn_raw_buffer_store_fp16x4(half4_t vdata,
index_t
voffset
,
index_t
voffset
,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4f16"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4f16"
);
//
float
//
buffer store fp32
__device__
void
__device__
void
llvm_amdgcn_raw_buffer_store_fp32
(
float
vdata
,
llvm_amdgcn_raw_buffer_store_fp32
(
float
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -229,8 +233,15 @@ llvm_amdgcn_raw_buffer_store_fp32x4(float4_t vdata,
...
@@ -229,8 +233,15 @@ llvm_amdgcn_raw_buffer_store_fp32x4(float4_t vdata,
index_t
voffset
,
index_t
voffset
,
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4f32"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.store.v4f32"
);
// atomic add
// buffer atomic-add fp16
// int
__device__
half2_t
llvm_amdgcn_raw_buffer_atomic_add_fp16x2
(
half2_t
vdata
,
int32x4_t
rsrc
,
index_t
voffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.atomic.fadd.v2f16"
);
// buffer atomic-add i32
__device__
int32_t
llvm_amdgcn_raw_buffer_atomic_add_i32
(
__device__
int32_t
llvm_amdgcn_raw_buffer_atomic_add_i32
(
int32_t
vdata
,
int32_t
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -238,7 +249,7 @@ __device__ int32_t llvm_amdgcn_raw_buffer_atomic_add_i32(
...
@@ -238,7 +249,7 @@ __device__ int32_t llvm_amdgcn_raw_buffer_atomic_add_i32(
index_t
soffset
,
index_t
soffset
,
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.atomic.add.i32"
);
index_t
glc_slc
)
__asm
(
"llvm.amdgcn.raw.buffer.atomic.add.i32"
);
//
float
//
buffer atomic-add fp32
__device__
float
llvm_amdgcn_raw_buffer_atomic_add_fp32
(
__device__
float
llvm_amdgcn_raw_buffer_atomic_add_fp32
(
float
vdata
,
float
vdata
,
int32x4_t
rsrc
,
int32x4_t
rsrc
,
...
@@ -752,6 +763,7 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
...
@@ -752,6 +763,7 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
index_t
dst_wave_addr_offset
)
index_t
dst_wave_addr_offset
)
{
{
static_assert
((
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
static_assert
((
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
)),
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
)),
"wrong! not implemented"
);
"wrong! not implemented"
);
...
@@ -810,6 +822,41 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
...
@@ -810,6 +822,41 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
0
);
0
);
}
}
}
}
else
if
constexpr
(
is_same
<
T
,
half_t
>::
value
)
{
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_atomic_add_fp16x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
0
);
}
else
if
constexpr
(
N
==
4
)
{
vector_type
<
half_t
,
4
>
tmp
{
src_thread_data
};
static_for
<
0
,
2
,
1
>
{}([
&
](
auto
i
)
{
llvm_amdgcn_raw_buffer_atomic_add_fp16x2
(
tmp
.
AsType
<
half2_t
>
()[
i
],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
i
*
sizeof
(
half2_t
),
0
);
});
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
half_t
,
8
>
tmp
{
src_thread_data
};
static_for
<
0
,
4
,
1
>
{}([
&
](
auto
i
)
{
llvm_amdgcn_raw_buffer_atomic_add_fp16x2
(
tmp
.
AsType
<
half2_t
>
()[
i
],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
i
*
sizeof
(
half2_t
),
0
);
});
}
}
else
if
constexpr
(
is_same
<
T
,
int32_t
>::
value
)
else
if
constexpr
(
is_same
<
T
,
int32_t
>::
value
)
{
{
if
constexpr
(
N
==
1
)
if
constexpr
(
N
==
1
)
...
...
device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp
0 → 100644
View file @
d3bd5922
#include <stdlib.h>
#include "config.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_atomic_add_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
InMemoryAtomicAdd
=
ck
::
InMemoryDataOperationEnum_t
::
AtomicAdd
;
using
device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
=
std
::
tuple
<
// clang-format off
//##########################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##########################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| GlobalMemory| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
//##########################################################################################| | | | | Operation| Operation| Operation| DataOperation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
//##########################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
16
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
16
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
16
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
32
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
16
>
,
2
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
InMemoryAtomicAdd
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
4
,
1
,
1
,
16
>
,
2
>
// clang-format on
>
;
void
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdBiasActivationPtr
<
PassThrough
,
PassThrough
,
AddRelu
>>&
instance_container
)
{
using
Instances
=
device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
;
const
auto
instances
=
Instances
{};
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
Instances
>
,
1
>
{}([
&
](
auto
i
)
{
using
Instance
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
instances
))
>
;
auto
instance
=
Instance
{};
instance_container
.
push_back
(
std
::
make_unique
<
Instance
>
(
instance
));
});
}
}
// namespace device_conv2d_fwd_bias_activation_atomic_add_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
View file @
d3bd5922
...
@@ -17,25 +17,27 @@ using S = ck::Sequence<Is...>;
...
@@ -17,25 +17,27 @@ using S = ck::Sequence<Is...>;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemorySet
=
ck
::
InMemoryDataOperationEnum_t
::
Set
;
using
device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances
=
std
::
tuple
<
using
device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//##########################################################################################| InData| WeiData| OutData| AccData|
A| B
|
C
| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##########################################################################################| InData| WeiData| OutData| AccData|
In| Wei| Out
|
Out
| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##########################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
//##########################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|
GlobalMemory|
Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
//##########################################################################################| | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
//##########################################################################################| | | | | Operation| Operation| Operation|
DataOperation|
| | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
//##########################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##########################################################################################| | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
8
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddRelu
,
MemorySet
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
16
,
1
,
1
,
4
>
,
8
>
// clang-format on
// clang-format on
>
;
>
;
...
...
device_operation/include/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp
View file @
d3bd5922
...
@@ -26,6 +26,7 @@ template <
...
@@ -26,6 +26,7 @@ template <
typename
InElementwiseOperation
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
typename
OutElementwiseOperation
,
InMemoryDataOperationEnum_t
OutGlobalMemoryDataOperation
,
ck
::
index_t
BlockSize
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
NPerBlock
,
...
@@ -229,7 +230,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
...
@@ -229,7 +230,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
ABDataType
,
// TODO: distinguish A/B datatype
ABDataType
,
// TODO: distinguish A/B datatype
AccDataType
,
AccDataType
,
CDataType
,
CDataType
,
In
MemoryDataOperation
Enum_t
::
Set
,
OutGlobal
MemoryDataOperation
,
AGridDesc_K0_M_K1
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
CGridDesc_M_N
,
...
...
example/5_conv2d_fwd_xdl_c_shuffle_bias_relu/conv2d_fwd_xdl_c_shuffle_bias_relu.cpp
View file @
d3bd5922
...
@@ -30,15 +30,17 @@ using InElementOp = ck::tensor_operation::element_wise::PassThrough;
...
@@ -30,15 +30,17 @@ using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemorySet
=
ck
::
InMemoryDataOperationEnum_t
::
Set
;
// clang-format off
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
// clang-format off
// | InData| WeiData| OutData| AccData| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | InData| WeiData| OutData| AccData| In| Wei| Out|
Out|
Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|
GlobalMemory|
Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | Operation| Operation| Operation|
DataOperation|
| | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// | | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
MemorySet
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
template
<
typename
TIn
,
template
<
typename
TIn
,
...
...
example/7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/README.md
0 → 100644
View file @
d3bd5922
# Instructions for ```conv_xdl_bias_relu_add``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```conv_xdl_bias_relu_add```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
conv_xdl_bias_relu_add
```
## Run ```conv_xdl_bias_relu_add```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
```
example/7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add.cpp
0 → 100644
View file @
d3bd5922
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemoryAtomicAdd
=
ck
::
InMemoryDataOperationEnum_t
::
AtomicAdd
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
// | InData| WeiData| OutData| AccData| In| Wei| Out| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| GlobalMemory| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeate| NRepeate| _MBlock_MRepeat_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| DataOperation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NRepeat_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
MemoryAtomicAdd
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
;
// clang-format on
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
v
+=
in_element_op
(
static_cast
<
const
double
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)))
*
wei_element_op
(
static_cast
<
const
double
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
}
}
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
+=
out_element_op
(
v
,
bias_k
(
k
));
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{});
break
;
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo_host_result
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
example/CMakeLists.txt
View file @
d3bd5922
...
@@ -19,6 +19,7 @@ set(CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bi
...
@@ -19,6 +19,7 @@ set(CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bi
set
(
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_c_shuffle_bias_relu/conv2d_fwd_xdl_c_shuffle_bias_relu.cpp
)
set
(
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_c_shuffle_bias_relu/conv2d_fwd_xdl_c_shuffle_bias_relu.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_c_shuffle_bias_relu_add/conv2d_fwd_xdl_c_shuffle_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_c_shuffle_bias_relu_add/conv2d_fwd_xdl_c_shuffle_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ATOMIC_ADD_SOURCE 7_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add/conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add.cpp
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
...
@@ -28,6 +29,7 @@ add_executable(conv2d_fwd_xdl_bias_relu ${CONV2D_FWD_XDL_BIAS_RELU_SOURCE})
...
@@ -28,6 +29,7 @@ add_executable(conv2d_fwd_xdl_bias_relu ${CONV2D_FWD_XDL_BIAS_RELU_SOURCE})
add_executable
(
conv2d_fwd_xdl_c_shuffle_bias_relu
${
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_c_shuffle_bias_relu
${
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_add
${
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_add
${
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_c_shuffle_bias_relu_add
${
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_c_shuffle_bias_relu_add
${
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add
${
CONV2D_FWD_XDL_C_SHUFFLE_BIAS_RELU_ATOMIC_ADD_SOURCE
}
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
...
@@ -37,3 +39,4 @@ target_link_libraries(conv2d_fwd_xdl_bias_relu PRIVATE host_tensor)
...
@@ -37,3 +39,4 @@ target_link_libraries(conv2d_fwd_xdl_bias_relu PRIVATE host_tensor)
target_link_libraries
(
conv2d_fwd_xdl_c_shuffle_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_c_shuffle_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_c_shuffle_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_c_shuffle_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add PRIVATE host_tensor
)
profiler/CMakeLists.txt
View file @
d3bd5922
...
@@ -69,8 +69,25 @@ target_compile_features(device_conv2d_fwd_bias_relu_add_instance PUBLIC)
...
@@ -69,8 +69,25 @@ target_compile_features(device_conv2d_fwd_bias_relu_add_instance PUBLIC)
set_target_properties
(
device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib
)
install
(
TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib
)
# device_conv2d_fwd_bias_relu_atomic_add_instance
set
(
DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library
(
device_conv2d_fwd_bias_relu_atomic_add_instance SHARED
${
DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv2d_fwd_bias_relu_atomic_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv2d_fwd_bias_relu_atomic_add_instance PUBLIC
)
set_target_properties
(
device_conv2d_fwd_bias_relu_atomic_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_bias_relu_atomic_add_instance LIBRARY DESTINATION lib
)
# ck_profiler
# ck_profiler
set
(
PROFILER_SOURCE profiler.cpp profile_gemm.cpp profile_conv_fwd.cpp profile_conv_fwd_bias_relu.cpp profile_conv_fwd_bias_relu_add.cpp
)
set
(
PROFILER_SOURCE
profiler.cpp
profile_gemm.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_fwd_bias_relu_atomic_add.cpp
)
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
target_link_libraries
(
ckProfiler PRIVATE host_tensor
)
target_link_libraries
(
ckProfiler PRIVATE host_tensor
)
...
@@ -78,3 +95,4 @@ target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
...
@@ -78,3 +95,4 @@ target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_atomic_add_instance
)
profiler/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
0 → 100644
View file @
d3bd5922
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd_bias_activation.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_atomic_add_instance
{
using
DeviceConvFwdBiasReluPtr
=
DeviceConvFwdBiasActivationPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddRelu
>
;
void
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdBiasReluPtr
>&
);
}
// namespace device_conv2d_fwd_bias_activation_atomic_add_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
void
cpu_conv_bias_relu_atomic_add
(
ck
::
half_t
*
in_ptr
,
ck
::
half_t
*
weight_ptr
,
ck
::
half_t
*
output_ptr
,
ck
::
half_t
*
bias_ptr
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
ck
::
index_t
Y
,
const
ck
::
index_t
X
,
const
ck
::
index_t
Hi
,
const
ck
::
index_t
Wi
,
const
ck
::
index_t
Ho
,
const
ck
::
index_t
Wo
,
const
ck
::
index_t
Stride
,
const
ck
::
index_t
Dilation
,
const
ck
::
index_t
Pad
)
{
const
auto
in_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Hi
),
static_cast
<
std
::
size_t
>
(
Wi
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
wei_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
),
static_cast
<
std
::
size_t
>
(
Y
),
static_cast
<
std
::
size_t
>
(
X
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
out_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Ho
),
static_cast
<
std
::
size_t
>
(
Wo
),
static_cast
<
std
::
size_t
>
(
K
)});
const
auto
bias_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
)});
auto
f_k
=
[
&
](
auto
k
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
int
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
for
(
int
y
=
0
;
y
<
Y
;
++
y
)
{
int
hi
=
ho
*
Stride
+
y
*
Dilation
-
Pad
;
for
(
int
x
=
0
;
x
<
X
;
++
x
)
{
int
wi
=
wo
*
Stride
+
x
*
Dilation
-
Pad
;
if
(
hi
>=
0
&&
hi
<
Hi
&&
wi
>=
0
&&
wi
<
Wi
)
{
double
in
=
in_ptr
[
in_desc
.
GetOffsetFromMultiIndex
(
n
,
hi
,
wi
,
c
)];
double
wei
=
weight_ptr
[
wei_desc
.
GetOffsetFromMultiIndex
(
k
,
y
,
x
,
c
)];
v
+=
in
*
wei
;
}
}
}
}
v
+=
bias_ptr
[
bias_desc
.
GetOffsetFromMultiIndex
(
k
)];
v
=
v
>
0
?
v
:
0
;
output_ptr
[
out_desc
.
GetOffsetFromMultiIndex
(
n
,
ho
,
wo
,
k
)]
=
v
;
}
}
}
};
make_ParallelTensorFunctor
(
f_k
,
K
)(
std
::
thread
::
hardware_concurrency
());
}
template
<
int
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
void
profile_conv_fwd_bias_relu_atomic_add_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
if
(
do_verification
)
{
cpu_conv_bias_relu_atomic_add
(
in_n_c_hi_wi
.
mData
.
data
(),
wei_k_c_y_x
.
mData
.
data
(),
out_n_k_ho_wo_host_result
.
mData
.
data
(),
bias_k
.
mData
.
data
(),
N
,
K
,
C
,
Y
,
X
,
Hi
,
Wi
,
Ho
,
Wo
,
conv_filter_strides
[
0
],
conv_filter_dilations
[
0
],
input_left_pads
[
0
]);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
using
DeviceConvFwdBiasReluPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// add device operator instances
std
::
vector
<
DeviceConvFwdBiasReluPtr
>
op_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
half_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_bias_activation_atomic_add_instance
::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
}
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
conv_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_conv_name
=
conv_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_conv_fwd_impl.hpp
View file @
d3bd5922
...
@@ -152,14 +152,18 @@ void profile_conv_fwd_impl(int do_verification,
...
@@ -152,14 +152,18 @@ void profile_conv_fwd_impl(int do_verification,
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
#if 0 // debug
ck::tensor_operation::device::device_conv2d_fwd_instance::
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_p0_f16_instances(conv_ptrs);
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_p0_f16_instances(conv_ptrs);
ck::tensor_operation::device::device_conv2d_fwd_instance::
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances(conv_ptrs);
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances(conv_ptrs);
#endif
#if 1 // debug
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_instance
::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
#endif
}
}
if
(
conv_ptrs
.
size
()
<=
0
)
if
(
conv_ptrs
.
size
()
<=
0
)
...
...
profiler/profile_conv_fwd_bias_relu_atomic_add.cpp
0 → 100644
View file @
d3bd5922
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_atomic_add_impl.hpp"
enum
ConvDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
enum
ConvInputLayout
{
NCHW
,
// 0
NHWC
,
// 1
};
enum
ConvWeightLayout
{
KCYX
,
// 0
KYXC
,
// 1
};
enum
ConvOutputLayout
{
NKHW
,
// 0
NHWK
,
// 1
};
int
profile_conv_fwd_bias_relu_atomic_add
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
25
)
{
printf
(
"arg1: tensor operation (conv_fwd_bias_relu_atomic_add: "
"ForwardConvolution+Bias+ReLu+AtomicAdd)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: input tensor layout (0: NCHW; 1: NHWC)
\n
"
);
printf
(
"arg4: weight tensor layout (0: KCYX; 1: KYXC)
\n
"
);
printf
(
"arg5: output tensor layout (0: NKHW; 1: NHWK)
\n
"
);
printf
(
"arg6: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg7: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg8: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg9: run kernel # of times (>1)
\n
"
);
printf
(
"arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
1
);
}
const
int
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
int
in_layout
=
static_cast
<
ConvInputLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
int
wei_layout
=
static_cast
<
ConvWeightLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
int
out_layout
=
static_cast
<
ConvOutputLayout
>
(
std
::
stoi
(
argv
[
5
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
6
]);
const
int
init_method
=
std
::
stoi
(
argv
[
7
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
8
]);
const
int
nrepeat
=
std
::
stoi
(
argv
[
9
]);
const
ck
::
index_t
N
=
std
::
stoi
(
argv
[
10
]);
const
ck
::
index_t
K
=
std
::
stoi
(
argv
[
11
]);
const
ck
::
index_t
C
=
std
::
stoi
(
argv
[
12
]);
const
ck
::
index_t
Y
=
std
::
stoi
(
argv
[
13
]);
const
ck
::
index_t
X
=
std
::
stoi
(
argv
[
14
]);
const
ck
::
index_t
Hi
=
std
::
stoi
(
argv
[
15
]);
const
ck
::
index_t
Wi
=
std
::
stoi
(
argv
[
16
]);
const
ck
::
index_t
conv_stride_h
=
std
::
stoi
(
argv
[
17
]);
const
ck
::
index_t
conv_stride_w
=
std
::
stoi
(
argv
[
18
]);
const
ck
::
index_t
conv_dilation_h
=
std
::
stoi
(
argv
[
19
]);
const
ck
::
index_t
conv_dilation_w
=
std
::
stoi
(
argv
[
20
]);
const
ck
::
index_t
in_left_pad_h
=
std
::
stoi
(
argv
[
21
]);
const
ck
::
index_t
in_left_pad_w
=
std
::
stoi
(
argv
[
22
]);
const
ck
::
index_t
in_right_pad_h
=
std
::
stoi
(
argv
[
23
]);
const
ck
::
index_t
in_right_pad_w
=
std
::
stoi
(
argv
[
24
]);
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
if
(
data_type
==
ConvDataType
::
F16_F16_F16
&&
in_layout
==
ConvInputLayout
::
NHWC
&&
wei_layout
==
ConvWeightLayout
::
KYXC
&&
out_layout
==
ConvOutputLayout
::
NHWK
)
{
ck
::
profiler
::
profile_conv_fwd_bias_relu_atomic_add_impl
<
2
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
>
(
do_verification
,
init_method
,
do_log
,
nrepeat
,
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{
Hi
,
Wi
},
std
::
vector
<
ck
::
index_t
>
{
Y
,
X
},
std
::
vector
<
ck
::
index_t
>
{
Ho
,
Wo
},
std
::
vector
<
ck
::
index_t
>
{
conv_stride_h
,
conv_stride_w
},
std
::
vector
<
ck
::
index_t
>
{
conv_dilation_h
,
conv_dilation_w
},
std
::
vector
<
ck
::
index_t
>
{
in_left_pad_h
,
in_left_pad_w
},
std
::
vector
<
ck
::
index_t
>
{
in_right_pad_h
,
in_right_pad_w
});
}
else
{
throw
std
::
runtime_error
(
"wrong! data_type & layout for this operator is not implemented"
);
}
return
1
;
}
profiler/profiler.cpp
View file @
d3bd5922
...
@@ -9,6 +9,7 @@ int profile_gemm(int, char*[]);
...
@@ -9,6 +9,7 @@ int profile_gemm(int, char*[]);
int
profile_conv_fwd
(
int
,
char
*
[]);
int
profile_conv_fwd
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu_add
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu_add
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu_atomic_add
(
int
,
char
*
[]);
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
@@ -28,13 +29,18 @@ int main(int argc, char* argv[])
...
@@ -28,13 +29,18 @@ int main(int argc, char* argv[])
{
{
return
profile_conv_fwd_bias_relu_add
(
argc
,
argv
);
return
profile_conv_fwd_bias_relu_add
(
argc
,
argv
);
}
}
else
if
(
strcmp
(
argv
[
1
],
"conv_fwd_bias_relu_atomic_add"
)
==
0
)
{
return
profile_conv_fwd_bias_relu_atomic_add
(
argc
,
argv
);
}
else
else
{
{
printf
(
printf
(
"arg1: tensor operation (gemm: GEMM;
\n
"
"arg1: tensor operation (gemm: GEMM;
\n
"
" conv_fwd: ForwardConvolution;
\n
"
" conv_fwd: ForwardConvolution;
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU)
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU)
\n
"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add)
\n
"
);
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add)
\n
"
" conv_fwd_bias_relu_atomic_add: "
"ForwardConvolution+Bias+ReLU+AtomicAdd)
\n
"
);
return
0
;
return
0
;
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment