Commit d305c079 authored by Artur Wojcik's avatar Artur Wojcik
Browse files

Merge branch 'uif2-initial' into uif2-migraphx

parents 57e82227 7c284291
...@@ -16,8 +16,8 @@ set(PROFILER_SOURCES ...@@ -16,8 +16,8 @@ set(PROFILER_SOURCES
profile_grouped_conv_fwd.cpp profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp profile_reduce.cpp
profile_groupnorm.cpp profile_groupnorm_fwd.cpp
profile_layernorm.cpp profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp profile_max_pool3d_bwd.cpp
...@@ -28,9 +28,11 @@ set(PROFILER_SOURCES ...@@ -28,9 +28,11 @@ set(PROFILER_SOURCES
profile_grouped_conv_bwd_data.cpp profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp profile_conv_tensor_rearrange.cpp
) )
if(DL_KERNELS) if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp) list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp) list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
...@@ -75,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w ...@@ -75,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
...@@ -110,4 +112,5 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) ...@@ -110,4 +112,5 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif() endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler) rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
...@@ -27,6 +27,8 @@ enum struct GemmDataType ...@@ -27,6 +27,8 @@ enum struct GemmDataType
F16_F16_F16, // 1 F16_F16_F16, // 1
BF16_BF16_BF16, // 2 BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3 INT8_INT8_INT8, // 3
F8_F16_F16, // 4
F16_F8_F16, // 5
}; };
#define OP_NAME "grouped_gemm" #define OP_NAME "grouped_gemm"
...@@ -56,7 +58,7 @@ int profile_grouped_gemm(int argc, char* argv[]) ...@@ -56,7 +58,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{ {
std::cout std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n" << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n" << "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: fp8@fp6; 5: f16@f8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n" << "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n" << " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< " 2: A[k, m] * B[k, n] = C[m, n];\n" << " 2: A[k, m] * B[k, n] = C[m, n];\n"
...@@ -169,6 +171,46 @@ int profile_grouped_gemm(int argc, char* argv[]) ...@@ -169,6 +171,46 @@ int profile_grouped_gemm(int argc, char* argv[])
StrideCs, StrideCs,
kbatch); kbatch);
} }
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::f8_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::f8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else else
{ {
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented"); throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
#include <unordered_map> #include <unordered_map>
#include "profiler/data_type_enum.hpp" #include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_impl.hpp" #include "profiler/profile_groupnorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp" #include "profiler_operation_registry.hpp"
using ck::index_t; using ck::index_t;
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
#include <unordered_map> #include <unordered_map>
#include "profiler/data_type_enum.hpp" #include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_impl.hpp" #include "profiler/profile_layernorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp" #include "profiler_operation_registry.hpp"
using ck::index_t; using ck::index_t;
...@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[]) ...@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
arg_parser(argc, argv); arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"]; const std::vector<index_t> length = arg_parser.long_opts["length"];
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
constexpr int rank = 2;
if(data_type == ck::DataTypeEnum::Half) if(length.size() == 2)
{ {
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>( constexpr int rank = 2;
do_verification, init_method, do_log, time_kernel, length);
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
} }
else if(data_type == ck::DataTypeEnum::Float) else if(length.size() == 4)
{ {
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>( constexpr int rank = 4;
do_verification, init_method, do_log, time_kernel, length);
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
} }
else else
{ {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_transpose_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct MatrixLayout
{
NCDHW, // 0
NCHWD, // 1
};
enum struct DataType
{
F32_F32_F32_F32_F32, // 0
F16_F16_F16_F16_F16, // 1
};
#define OP_NAME "transpose"
#define OP_DESC "Transpose"
int profile_transpose(int argc, char* argv[])
{
if(argc != 15)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
// printf("arg3: matrix layout (NCDHW -> NDCHW);\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: N, C, D, H, W\n");
exit(1);
}
const auto data_type = static_cast<DataType>(std::stoi(argv[2]));
// const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const bool time_kernel = std::stoi(argv[6]);
std::vector<index_t> lengths = std::stoi(argv[7]);
/**const int N = std::stoi(argv[7]);
const int C = std::stoi(argv[8]);
const int D = std::stoi(argv[9]);
const int H = std::stoi(argv[10]);
const int W = std::stoi(argv[11]);**/
using F32 = float;
using F16 = ck::half_t;
auto profile = [&](auto a_type, auto b_type) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
bool pass = ck::profiler::profile_transpose_impl<ADataType, BDataType>(
do_verification, init_method, do_log, time_kernel, lengths);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F32_F32_F32_F32_F32)
{
return profile(F32{}, F32{});
}
else if(data_type == GemmDataType::F16_F16_F16_F16_F16)
{
return profile(F16{}, F16{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_transpose);
...@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1 ...@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake \ cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker \ -D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-save-temps=$PWD" \
-D CMAKE_BUILD_TYPE=Release \ -D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \ -D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \ -D GPU_TARGETS="gfx908;gfx90a;gfx940" \
......
SECTIONS {
.hipFatBinSegment : { *(.hipFatBinSegment) }
} INSERT AFTER .bss
SECTIONS {
.hip_fatbin : { *(.hip_fatbin) }
} INSERT AFTER .hipFatBinSegment
...@@ -144,7 +144,7 @@ else() ...@@ -144,7 +144,7 @@ else()
add_subdirectory(grouped_convnd_bwd_weight) add_subdirectory(grouped_convnd_bwd_weight)
add_subdirectory(block_to_ctile_map) add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax) add_subdirectory(softmax)
add_subdirectory(normalization) add_subdirectory(normalization_fwd)
add_subdirectory(data_type) add_subdirectory(data_type)
add_subdirectory(elementwise_normalization) add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm) add_subdirectory(batchnorm)
...@@ -153,6 +153,7 @@ else() ...@@ -153,6 +153,7 @@ else()
add_subdirectory(batched_gemm_multi_d) add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data) add_subdirectory(grouped_convnd_bwd_data)
add_subdirectory(conv_tensor_rearrange) add_subdirectory(conv_tensor_rearrange)
add_subdirectory(transpose)
if(GPU_TARGETS MATCHES "gfx11") if(GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op) add_subdirectory(wmma_op)
endif() endif()
......
add_gtest_executable(test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp) add_gtest_executable(test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp)
target_link_libraries(test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance) target_link_libraries(test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance)
add_gtest_executable(test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_ab_interface PRIVATE utility)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
template <typename DataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
class TestGroupedConvndFwdMultiABInterfaceBase : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
static constexpr ck::index_t NumAs = 2;
static constexpr ck::index_t NumBs = 2;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = PassThrough;
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
DataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
const ck::utils::conv::ConvParam conv_param{
3, 1, 16, 16, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
void SetUp() override
{
if(!ck::is_xdl_supported())
{
GTEST_SKIP();
}
}
template <typename ADataType, typename BDataType>
bool Run(ADataType as, BDataType bs)
{
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceGroupedConvNDMultiABFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
nullptr,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
return conv.IsSupportedArgument(argument);
}
};
class TestGroupedConvndFwdMultiAInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
float,
ScaleAdd,
PassThrough>
{
};
class TestGroupedConvndFwdMultiBInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
float,
ck::Tuple<float, float>,
PassThrough,
ScaleAdd>
{
};
class TestGroupedConvndFwdMultiABInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
ck::Tuple<float, float>,
ScaleAdd,
ScaleAdd>
{
};
class TestGroupedConvndFwdInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float, float, float, PassThrough, PassThrough>
{
};
TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
const void* b = nullptr;
EXPECT_TRUE(this->template Run(as, b));
}
TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
{
const void* a = nullptr;
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(a, bs));
}
TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(as, bs));
}
TEST_F(TestGroupedConvndFwdInterface, SingleAB)
{
const void* a = nullptr;
const void* b = nullptr;
EXPECT_TRUE(this->template Run(a, b));
}
...@@ -108,6 +108,10 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops) ...@@ -108,6 +108,10 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
// kloops % 2 // kloops % 2
Ks = std::vector<int>{256, 512, 320, 768}; Ks = std::vector<int>{256, 512, 320, 768};
EXPECT_FALSE(
DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch));
Ks = std::vector<int>{256, 512, 384, 768};
EXPECT_TRUE( EXPECT_TRUE(
DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch)); DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch));
......
add_custom_target(test_normalization)
add_gtest_executable(test_layernorm2d_fp32 test_layernorm2d_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fp32 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_layernorm2d_fp32)
endif()
add_gtest_executable(test_groupnorm_fp32 test_groupnorm_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fp32 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_groupnorm_fp32)
endif()
add_gtest_executable(test_layernorm2d_fp16 test_layernorm2d_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fp16 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_layernorm2d_fp16)
endif()
add_gtest_executable(test_groupnorm_fp16 test_groupnorm_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fp16 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_groupnorm_fp16)
endif()
add_custom_target(test_normalization_fwd)
add_gtest_executable(test_layernorm2d_fwd_fp32 test_layernorm2d_fwd_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fwd_fp32 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm2d_fwd_fp32)
endif()
add_gtest_executable(test_groupnorm_fwd_fp32 test_groupnorm_fwd_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fwd_fp32 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_groupnorm_fwd_fp32)
endif()
add_gtest_executable(test_layernorm2d_fwd_fp16 test_layernorm2d_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm2d_fwd_fp16)
endif()
add_gtest_executable(test_layernorm4d_fwd_fp16 test_layernorm4d_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm4d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm4d_fwd_fp16)
endif()
add_gtest_executable(test_groupnorm_fwd_fp16 test_groupnorm_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_groupnorm_fwd_fp16)
endif()
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp" #include "profiler/profile_groupnorm_fwd_impl.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp" #include "profiler/profile_groupnorm_fwd_impl.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp" #include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp" #include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestLayernorm4d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
// [N, D], reduce D
std::vector<std::vector<ck::index_t>> lengths = {
{1, 1, 1, 1}, {7, 7, 7, 7}, {256, 16, 16, 8}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_layernorm_impl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
true,
4>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16, F32>>;
TYPED_TEST_SUITE(TestLayernorm4d, KernelTypes);
TYPED_TEST(TestLayernorm4d, Test_FP16) { this->Run(); }
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_gtest_executable(test_transpose test_transpose.cpp)
target_link_libraries(test_transpose PRIVATE utility device_transpose_instance)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "gtest/gtest.h"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "test_transpose_util.hpp"
using F16 = ck::half_t;
using F32 = float;
template <typename Tuple>
class TestTranspose : public ::testing::Test
{
};
// clang-format off
using KernelTypes = ::testing::Types<
std::tuple< F16, F16>,
std::tuple< F32, F32>
>;
// clang-format on
TYPED_TEST_SUITE(TestTranspose, KernelTypes);
//#include "test_transpose_ut_cases.inc"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment