Unverified Commit d3051d75 authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

add license in file (#303)

parent d1db6a0c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <fstream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef BATCHED_GEMM_UTILS_HPP
#define BATCHED_GEMM_UTILS_HPP
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_reduce_impl.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <gtest/gtest.h>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
#include <iostream>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
namespace {
class TestConvUtil : public ::testing::Test
{
public:
void SetNDParams(std::size_t ndims)
{
conv_params.num_dim_spatial_ = ndims;
conv_params.filter_spatial_lengths_ = std::vector<ck::index_t>(ndims, 3);
conv_params.input_spatial_lengths_ = std::vector<ck::index_t>(ndims, 71);
conv_params.conv_filter_strides_ = std::vector<ck::index_t>(ndims, 2);
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_left_pads_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_right_pads_ = std::vector<ck::index_t>(ndims, 1);
}
protected:
// ------- default 2D -------
// input NCHW {128,192,71,71},
// weights KCYX {256,192,3,3},
// stride {2,2},
// dilations {1,1},
// padding {{1,1}, {1,1}}
ck::utils::conv::ConvParams conv_params;
};
} // namespace
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths2D)
{
ck::utils::conv::ConvParams conv_params;
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71, 71}, "Error: ConvParams 2D stride {1,1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36}, "Error: ConvParams 2D dilation {2,2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths1D)
{
SetNDParams(1);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D dilation {2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths3D)
{
SetNDParams(3);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36, 36}, "Error: ConvParams 3D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{71, 71, 71},
"Error: ConvParams 3D stride {1, 1, 1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37, 37},
"Error: ConvParams 3D padding left/right {2, 2, 2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36, 36},
"Error: ConvParams 3D dilation {2, 2, 2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len,
std::vector<ck::index_t>{23, 23, 23},
"Error: ConvParams 3D strides{3, 3, 3}, padding {1, 1, 1}, dilations {2, 2, 2}."));
}
TEST(ConvUtil, GetHostTensorDescriptor)
{
namespace tl = ck::tensor_layout::convolution;
std::vector<std::size_t> dims{2, 3, 4, 5};
HostTensorDescriptor h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NHWC{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 1, 3 * 5, 3}, "Error: wrong NHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCHW{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NCHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 4 * 5, 5, 1}, "Error: wrong NCHW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 1, 3}, "Error: wrong NWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NCW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 4, 1}, "Error: wrong NCW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4, 5, 6};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NDHWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NDHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
1, // C
3 * 5 * 6, // D
3 * 6, // H
3}, // W
"Error: wrong NDHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCDHW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NCDHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
4 * 5 * 6, // C
5 * 6, // D
6, // H
1}, // W
"Error: wrong NCDHW dimensions strides!"));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
namespace {
class TestConvUtil : public ::testing::Test
{
public:
void SetNDParams(std::size_t ndims)
{
conv_params.num_dim_spatial_ = ndims;
conv_params.filter_spatial_lengths_ = std::vector<ck::index_t>(ndims, 3);
conv_params.input_spatial_lengths_ = std::vector<ck::index_t>(ndims, 71);
conv_params.conv_filter_strides_ = std::vector<ck::index_t>(ndims, 2);
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_left_pads_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_right_pads_ = std::vector<ck::index_t>(ndims, 1);
}
protected:
// ------- default 2D -------
// input NCHW {128,192,71,71},
// weights KCYX {256,192,3,3},
// stride {2,2},
// dilations {1,1},
// padding {{1,1}, {1,1}}
ck::utils::conv::ConvParams conv_params;
};
} // namespace
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths2D)
{
ck::utils::conv::ConvParams conv_params;
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71, 71}, "Error: ConvParams 2D stride {1,1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36}, "Error: ConvParams 2D dilation {2,2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths1D)
{
SetNDParams(1);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D dilation {2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths3D)
{
SetNDParams(3);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36, 36}, "Error: ConvParams 3D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{71, 71, 71},
"Error: ConvParams 3D stride {1, 1, 1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37, 37},
"Error: ConvParams 3D padding left/right {2, 2, 2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36, 36},
"Error: ConvParams 3D dilation {2, 2, 2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len,
std::vector<ck::index_t>{23, 23, 23},
"Error: ConvParams 3D strides{3, 3, 3}, padding {1, 1, 1}, dilations {2, 2, 2}."));
}
TEST(ConvUtil, GetHostTensorDescriptor)
{
namespace tl = ck::tensor_layout::convolution;
std::vector<std::size_t> dims{2, 3, 4, 5};
HostTensorDescriptor h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NHWC{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 1, 3 * 5, 3}, "Error: wrong NHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCHW{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NCHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 4 * 5, 5, 1}, "Error: wrong NCHW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 1, 3}, "Error: wrong NWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NCW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 4, 1}, "Error: wrong NCW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4, 5, 6};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NDHWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NDHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
1, // C
3 * 5 * 6, // D
3 * 6, // H
3}, // W
"Error: wrong NDHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCDHW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NCDHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
4 * 5 * 6, // C
5 * 6, // D
6, // H
1}, // W
"Error: wrong NCDHW dimensions strides!"));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
......
#include <iostream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv1dFwdNWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv1d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
1, 4, 256, 64, {3}, {71}, {2}, {2}, {2}, {2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
1, 4, 256, 64, {1}, {28}, {1}, {1}, {0}, {0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
1, 4, 256, 64, {1}, {28}, {2}, {1}, {0}, {0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv1DFwdNWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv1DFwdNWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(0.1);
run_engine.SetRtol(1e-2);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST_F(Conv1dFwdNWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv1dFwdNWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv1dFwdNWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv1dFwdNWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv1dFwdNWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv1d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
1, 4, 256, 64, {3}, {71}, {2}, {2}, {2}, {2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
1, 4, 256, 64, {1}, {28}, {1}, {1}, {0}, {0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
1, 4, 256, 64, {1}, {28}, {2}, {1}, {0}, {0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv1DFwdNWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv1DFwdNWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(0.1);
run_engine.SetRtol(1e-2);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST_F(Conv1dFwdNWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv1dFwdNWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv1dFwdNWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv1dFwdNWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv2dFwdNHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv2d_nhwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_default_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_default_);
}
}
template <typename T>
bool test_filter1x1_stride1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2),
params_filter1x1_stride1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_stride1_pad0_);
}
}
template <typename T>
bool test_filter1x1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_filter1x1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_pad0_);
}
}
template <typename T>
bool test_oddC()
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(), params_oddC_);
}
static inline ck::utils::conv::ConvParams params_default_{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_oddC_{
2, 4, 256, 3, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv2DFwdNHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = float;
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {1, 1}, {2, 2}, {2, 2}, {2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv2DFwdNHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = ck::half_t;
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(2e-4);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST_F(Conv2dFwdNHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_oddC) { EXPECT_TRUE(this->test_oddC<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_default)
{
EXPECT_TRUE(this->test_default<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_default)
{
EXPECT_TRUE(this->test_default<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_default) { EXPECT_TRUE(this->test_default<float>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_default) { EXPECT_TRUE(this->test_default<int8_t>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>(true));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv2dFwdNHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv2d_nhwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_default_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_default_);
}
}
template <typename T>
bool test_filter1x1_stride1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2),
params_filter1x1_stride1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_stride1_pad0_);
}
}
template <typename T>
bool test_filter1x1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_filter1x1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_pad0_);
}
}
template <typename T>
bool test_oddC()
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(), params_oddC_);
}
static inline ck::utils::conv::ConvParams params_default_{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_oddC_{
2, 4, 256, 3, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv2DFwdNHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = float;
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {1, 1}, {2, 2}, {2, 2}, {2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv2DFwdNHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = ck::half_t;
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(2e-4);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST_F(Conv2dFwdNHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_oddC) { EXPECT_TRUE(this->test_oddC<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_default)
{
EXPECT_TRUE(this->test_default<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_default)
{
EXPECT_TRUE(this->test_default<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_default) { EXPECT_TRUE(this->test_default<float>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_default) { EXPECT_TRUE(this->test_default<int8_t>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>(true));
}
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv3dFwdNDHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv3d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
3, 4, 256, 64, {3, 3, 3}, {28, 28, 28}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv3DFwdNDHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv3DFwdNDHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-3);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv3DFwdNDHWC, InputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Input
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 32;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3, 3, 3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{32, 1000, 1000};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST(Conv3DFwdNDHWC, FiltersOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Filters
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 32;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{4, 1000, 1000};
params.input_spatial_lengths_ = std::vector<ck::index_t>{16, 16, 16};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST(Conv3DFwdNDHWC, OutputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Output
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 2;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{1, 1, 1};
params.input_spatial_lengths_ = std::vector<ck::index_t>{1000, 1000, 30};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{2, 2, 2};
params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST_F(Conv3dFwdNDHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv3dFwdNDHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace {
class Conv3dFwdNDHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv3d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
3, 4, 256, 64, {3, 3, 3}, {28, 28, 28}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv3DFwdNDHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv3DFwdNDHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-3);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv3DFwdNDHWC, InputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Input
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 32;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3, 3, 3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{32, 1000, 1000};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST(Conv3DFwdNDHWC, FiltersOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Filters
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 32;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{4, 1000, 1000};
params.input_spatial_lengths_ = std::vector<ck::index_t>{16, 16, 16};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST(Conv3DFwdNDHWC, OutputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Output
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 2;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{1, 1, 1};
params.input_spatial_lengths_ = std::vector<ck::index_t>{1000, 1000, 30};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{2, 2, 2};
params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
PassThrough{},
PassThrough{},
PassThrough{});
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST_F(Conv3dFwdNDHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv3dFwdNDHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <tuple>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment