Commit d27e0691 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'upstream/develop' into merge_upstream_1129

also fix regression
parents 0a7174ad a2969aa8
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
if((DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations)
endif()
if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp)
target_link_libraries(client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_conv_operations)
endif()
......@@ -11,7 +11,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......@@ -94,7 +94,8 @@ template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3>
ck::index_t NumNonSpatialDim = 3,
typename ComputeType = InDataType>
bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
......@@ -173,18 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough,
ComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout,
3,
ck::f8_t>(
{N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp)
target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_operations)
\ No newline at end of file
target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_gemm_operations)
\ No newline at end of file
add_executable(client_groupnorm_swish groupnorm_swish.cpp)
target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_operations)
target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_other_operations)
......@@ -7,17 +7,19 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd_swish.hpp"
using XDataType = ck::half_t;
using GammaDataType = float;
using BetaDataType = float;
using YDataType = ck::half_t;
using ComputeDataType = float;
using Swish = ck::tensor_operation::element_wise::Swish;
using XDataType = ck::half_t;
using GammaDataType = float;
using BetaDataType = float;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using Swish = ck::tensor_operation::element_wise::Swish;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
......@@ -49,22 +51,27 @@ int main(int argc, char* argv[])
std::size_t xy_size = N * H * W * G * C;
std::size_t gamma_beta_size = G * C;
std::vector<ck::index_t> xy_strides = {H * W * G * C, W * G * C, G * C, C, 1};
std::vector<ck::index_t> gamma_beta_strides = {0, 0, 0, C, 1};
std::vector<ck::index_t> xy_strides = {H * W * G * C, W * G * C, G * C, C, 1};
std::vector<ck::index_t> gamma_beta_strides = {0, 0, 0, C, 1};
std::vector<ck::index_t> save_mean_inv_std_strides = {G, 1};
SimpleDeviceMem x_device_buf(sizeof(XDataType) * xy_size);
SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_beta_size);
SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * gamma_beta_size);
SimpleDeviceMem y_device_buf(sizeof(YDataType) * xy_size);
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
Swish,
Rank,
NumReduceDim>;
#ifdef SAVE_MEAN_INV_STD
SimpleDeviceMem save_mean_device_buf(sizeof(SaveMeanInvStdDataType) * N * G);
SimpleDeviceMem save_inv_std_device_buf(sizeof(SaveMeanInvStdDataType) * N * G);
#endif
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationFwd<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
Swish,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -75,19 +82,26 @@ int main(int argc, char* argv[])
const auto& generic_op_ptr = op_ptrs[0];
auto generic_argument_ptr =
generic_op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
{1, 2, 4}, // reduceDims
generic_op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
save_mean_inv_std_strides, // save_mean Strides
save_mean_inv_std_strides, // save_inv_std Strides
{1, 2, 4}, // reduceDims
1e-6,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf.GetDeviceBuffer(),
save_inv_std_device_buf.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
Swish{});
if(!generic_op_ptr->IsSupportedArgument(generic_argument_ptr.get()))
......@@ -107,21 +121,29 @@ int main(int argc, char* argv[])
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
{1, 2, 4}, // reduceDims
1e-6,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
Swish{});
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
save_mean_inv_std_strides, // save_mean Strides
save_mean_inv_std_strides, // save_inv_std Strides
{1, 2, 4}, // reduceDims
1e-6,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf.GetDeviceBuffer(),
save_inv_std_device_buf.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
Swish{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......@@ -139,6 +161,10 @@ int main(int argc, char* argv[])
sizeof(XDataType) * xy_size + sizeof(GammaDataType) * gamma_beta_size +
sizeof(BetaDataType) * gamma_beta_size + sizeof(YDataType) * xy_size;
#ifdef SAVE_MEAN_INV_STD
num_byte += sizeof(SaveMeanInvStdDataType) * N * G * 2;
#endif
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
......@@ -169,20 +195,28 @@ int main(int argc, char* argv[])
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
{1, 2, 4}, // reduceDims
1e-6,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
Swish{});
auto argument_ptr =
op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths
xy_strides, // xStrides
gamma_beta_strides, // gammaStrides
gamma_beta_strides, // betaStrides
xy_strides, // yStrides
save_mean_inv_std_strides, // save_mean Strides
save_mean_inv_std_strides, // save_inv_std Strides
{1, 2, 4}, // reduceDims
1e-6,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf.GetDeviceBuffer(),
save_inv_std_device_buf.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
Swish{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
add_executable(client_max_pool2d_fwd max_pool2d_fwd.cpp)
target_link_libraries(client_max_pool2d_fwd PRIVATE composable_kernel::device_operations)
target_link_libraries(client_max_pool2d_fwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_max_pool2d_bwd max_pool2d_bwd.cpp)
target_link_libraries(client_max_pool2d_bwd PRIVATE composable_kernel::device_operations)
target_link_libraries(client_max_pool2d_bwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_avg_pool3d_fwd avg_pool3d_fwd.cpp)
target_link_libraries(client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations)
target_link_libraries(client_avg_pool3d_fwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_avg_pool3d_bwd avg_pool3d_bwd.cpp)
target_link_libraries(client_avg_pool3d_bwd PRIVATE composable_kernel::device_operations)
target_link_libraries(client_avg_pool3d_bwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp)
target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_operations)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp)
target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_gemm_operations)
endif()
add_executable(client_grouped_gemm_fixed_nk_bias_fp16 grouped_gemm_fixed_nk_bias_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_gemm_operations)
......@@ -60,14 +60,13 @@ int main()
int sum_of_m = 0;
Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
int group_count = Ms.size();
const int group_count = 16;
for(int i = 0; i < group_count; ++i)
{
Ns.push_back(768);
Ks.push_back(4608);
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
......
add_executable(client_grouped_gemm_fixed_nk_fp16 grouped_gemm_fixed_nk_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fixed_nk_fp8 grouped_gemm_fixed_nk_fp8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_gemm_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
const int group_count = 16;
for(int i = 0; i < group_count; ++i)
{
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 32);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
const int group_count = 16;
for(int i = 0; i < group_count; ++i)
{
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 16);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using I8 = int8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = I8;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
const int group_count = 16;
for(int i = 0; i < group_count; ++i)
{
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 32);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
add_executable(client_image_to_column image_to_column.cpp)
target_link_libraries(client_image_to_column PRIVATE composable_kernel::device_operations)
target_link_libraries(client_image_to_column PRIVATE composable_kernel::device_other_operations)
add_executable(client_column_to_image column_to_image.cpp)
target_link_libraries(client_column_to_image PRIVATE composable_kernel::device_other_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using ImageLayout = ck::tensor_layout::convolution::NHWGC;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 2;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 28; // input H
static constexpr ck::index_t Wi = 28; // input W
static constexpr ck::index_t Ho = 28; // output H
static constexpr ck::index_t Wo = 28; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::array<ck::index_t, 2> in_spatial_lengths{Hi, Wi};
std::array<ck::index_t, 2> wei_spatial_lengths{Y, X};
std::array<ck::index_t, 2> out_spatial_lengths{Ho, Wo};
// We have NHWGC in memory space
// However, CK's API only accepts lengths and strides with order of GNCHW.
// Hence, we need to adjust the order of strides.
std::array<ck::index_t, 5> image_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 3> gemm_strides{Y * X * C, G * Y * X * C, 1};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Ho * Wo * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Hi * Wi * G * C);
using namespace ck::conv_tensor_rearrange_op;
using DeviceOp = ck::tensor_operation::device::DeviceConvTensorRearrange<NumDimSpatial,
ImageLayout,
InDataType,
OutDataType,
ColumnToImage>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
out_spatial_lengths,
wei_spatial_lengths,
image_strides,
gemm_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(avg_time < best_avg_time)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
out_spatial_lengths,
wei_spatial_lengths,
image_strides,
gemm_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
......@@ -9,16 +9,17 @@
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/image_to_column.hpp"
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using ImageLayout = ck::tensor_layout::convolution::NHWGC;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 2;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
......@@ -51,11 +52,11 @@ int main()
std::array<ck::index_t, 2> wei_spatial_lengths{Y, X};
std::array<ck::index_t, 2> out_spatial_lengths{Ho, Wo};
// We have NHWGC in memory space (G is dummy)
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 2> out_strides{Y * X * C, 1};
// We have NHWGC in memory space
// However, CK's API only accepts lengths and strides with order of GNCHW.
// Hence, we need to adjust the order of strides.
std::array<ck::index_t, 5> image_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 3> gemm_strides{Y * X * C, G * Y * X * C, 1};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1};
......@@ -63,10 +64,15 @@ int main()
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C);
using DeviceOp = ck::tensor_operation::device::
DeviceImageToColumn<NumDimSpatial, InLayout, InDataType, OutDataType>;
using namespace ck::conv_tensor_rearrange_op;
using DeviceOp = ck::tensor_operation::device::DeviceConvTensorRearrange<NumDimSpatial,
ImageLayout,
InDataType,
OutDataType,
ImageToColumn>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -87,13 +93,14 @@ int main()
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
out_spatial_lengths,
wei_spatial_lengths,
in_strides,
out_strides,
image_strides,
gemm_strides,
filter_strides,
filter_dilations,
input_left_pads,
......@@ -106,7 +113,7 @@ int main()
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(OutDataType) * N * Ho * Wo * Y * X * C;
sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -143,13 +150,14 @@ int main()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
out_spatial_lengths,
wei_spatial_lengths,
in_strides,
out_strides,
image_strides,
gemm_strides,
filter_strides,
filter_dilations,
input_left_pads,
......
add_executable(client_elementwise_transpose3d elementwise_transpose_3d.cpp)
target_link_libraries(client_elementwise_transpose3d PRIVATE composable_kernel::device_other_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
const int N = 16;
const int C = 8;
const int D = 8;
const int H = 8;
const int W = 8;
std::vector<std::size_t> ncdhw = {N, C, D, H, W};
std::vector<std::size_t> nchwd = {N, C, H, W, D};
auto size = N * C * D * H * W;
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, C, H, W, D
SimpleDeviceMem a_dev_buf(sizeof(ADataType) * size);
SimpleDeviceMem b_dev_buf(sizeof(BDataType) * size);
std::array<const void*, 1> input = {a_dev_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_dev_buf.GetDeviceBuffer()};
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::
DeviceElementwise<ck::Tuple<ADataType>, ck::Tuple<BDataType>, PassThrough, 5>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceElementwisePermuteInstance>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte =
sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_conv_operations)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment