Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d2640676
Commit
d2640676
authored
Jul 10, 2022
by
Wenkai
Browse files
add optimization for small gemm
parent
840a617d
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
715 additions
and
28 deletions
+715
-28
example/01_gemm/gemm_xdl_fp16_splitk.cpp
example/01_gemm/gemm_xdl_fp16_splitk.cpp
+15
-6
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle_small_gemm.hpp
...pu/device/device_gemm_xdl_splitk_c_shuffle_small_gemm.hpp
+665
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
...k/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
+2
-2
include/ck/utility/common_header.hpp
include/ck/utility/common_header.hpp
+33
-20
No files found.
example/01_gemm/gemm_xdl_fp16_splitk.cpp
View file @
d2640676
...
...
@@ -11,7 +11,7 @@
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_splitk_c_shuffle.hpp"
#include "device_gemm_xdl_splitk_c_shuffle
_small_gemm
.hpp"
#include "device_gemm_xdl_splitk_c_shuffle_static.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
...
...
@@ -47,25 +47,34 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
#if USEING_STATIC_KERNEL
#if MNKB_1_4
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffleStatic
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//<Row, Row, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 3, 256, 16, 128, 32, 8, 2, 16, 16, 1, 2, S<1, 4, 16, 4>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 2, 2, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 8, 1, 2, S<1, 4, 1, 64>, 2>;
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
2
,
256
,
16
,
128
,
32
,
8
,
2
,
16
,
16
,
1
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
2
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
8
,
1
,
2
,
S
<
1
,
4
,
1
,
64
>
,
2
>
;
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
16
,
128
,
32
,
8
,
2
,
16
,
16
,
1
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
2
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
8
,
1
,
2
,
S
<
1
,
4
,
1
,
64
>
,
2
>
;
#else
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffleStatic
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
3
,
256
,
16
,
128
,
32
,
8
,
2
,
16
,
16
,
1
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
2
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
8
,
1
,
2
,
S
<
1
,
4
,
1
,
64
>
,
2
>
;
//<Row, Row, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 2, 256, 16, 256, 32, 8, 2, 16, 16, 1, 4, S<1, 4, 16, 4>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 2, 2, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 8, 1, 2, S<1, 4, 1, 64>, 2>;
//<Row, Col, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 16, 128, 128, 8, 8, 16, 16, 1, 2, S<1, 16, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 2, S<1, 4, 1, 64>, 2>;
//<Row, Row, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 4, 256, 16, 128, 32, 8, 2, 16, 16, 1, 2, S<1, 4, 16, 4>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 2, 2, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 8, 1, 2, S<1, 4, 1, 64>, 2>;
#endif
#else
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffle
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSplitKCShuffle
SmallGemm
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
3
,
256
,
16
,
128
,
32
,
8
,
2
,
16
,
16
,
1
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
2
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
8
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
2
>
;
//<Row, Row, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault,
4
, 256, 16,
128
, 32, 8, 2, 16, 16, 1,
2
, S<1, 4, 16, 4>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 2, 2, 1, S<1,
8
,
32
, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 8, 1,
1
, S<1,
16
, 1,
1
6>, 2>;
//<Row, Row, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault,
3
, 256, 16,
256
, 32, 8, 2, 16, 16, 1,
4
, S<1, 4, 16, 4>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 2, 2, 1, S<1,
4
,
64
, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 8, 1,
2
, S<1,
4
, 1, 6
4
>, 2>;
// clang-format on
...
...
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle_small_gemm.hpp
0 → 100644
View file @
d2640676
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4r2.hpp"
#include "gemm_specialization.hpp"
#ifndef CK_RUN_KERNEL_AND_TIME
#define CK_RUN_KERNEL_AND_TIME 1
#endif
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGemmXdlSplitKCShuffleSmallGemm
:
public
DeviceGemm
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
auto
MakeAGridDescriptor_KBatch_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
,
int
KBatch
,
int
KPad
)
{
assert
(
KPad
%
(
AK1
*
KBatch
)
==
0
);
const
index_t
AK0
=
KPad
/
(
AK1
*
KBatch
);
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
)
{
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
static
auto
MakeBGridDescriptor_KBatch_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
,
int
KBatch
,
int
KPad
)
{
assert
(
KPad
%
(
BK1
*
KBatch
)
==
0
);
const
index_t
BK0
=
KPad
/
(
BK1
*
KBatch
);
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
)
{
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
GetKPad
(
index_t
K
,
index_t
KBatch
)
{
const
index_t
KPad
=
math
::
integer_divide_ceil
(
K
,
KPerBlock
*
KBatch
)
*
(
KPerBlock
*
KBatch
);
return
KPad
;
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_KBatch_K0_M_K1
(
1
,
1
,
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_KBatch_K0_N_K1
(
1
,
1
,
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
NumGemmKPrefetchStage
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
;
// GridwiseGemm
using
GridwiseGemmAtomicAdd
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CDataType
,
InMemoryDataOperationEnum
::
AtomicAdd
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
NumGemmKPrefetchStage
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
;
using
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
decltype
(
GridwiseGemm
::
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
typename
GridwiseGemm
::
CBlockClusterAdaptor
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
index_t
k_batch
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_kbatch_k0_m_k1_
{},
b_grid_desc_kbatch_k0_n_k1_
{},
c_grid_desc_m_n_
{},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
},
k_batch_
{
k_batch
}
{
int
KPad
=
DeviceGemmXdlSplitKCShuffleSmallGemm
::
GetKPad
(
K
,
k_batch_
);
a_grid_desc_kbatch_k0_m_k1_
=
DeviceGemmXdlSplitKCShuffleSmallGemm
::
MakeAGridDescriptor_KBatch_K0_M_K1
(
M
,
K
,
StrideA
,
k_batch_
,
KPad
);
b_grid_desc_kbatch_k0_n_k1_
=
DeviceGemmXdlSplitKCShuffleSmallGemm
::
MakeBGridDescriptor_KBatch_K0_N_K1
(
K
,
N
,
StrideB
,
k_batch_
,
KPad
);
c_grid_desc_m_n_
=
DeviceGemmXdlSplitKCShuffleSmallGemm
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
c_grid_desc_m_n_
,
M01
,
N01
,
k_batch_
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_kbatch_k0_m_k1_
,
b_grid_desc_kbatch_k0_n_k1_
,
c_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_kbatch_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_kbatch_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
Block2CTileMap
block_2_ctile_map_
;
index_t
M01_
;
index_t
N01_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
k_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceGemmXdlSplitKCShuffleSmallGemm
::
Argument
;
void
ShowInfo
(
const
Argument
&
arg
)
{
std
::
cout
<<
"arg.a_grid_desc_kbatch_k0_m_k1_{"
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_kbatch_k0_n_k1_{"
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
ShowInfo
(
arg
);
const
auto
kbatch
=
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
);
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I1
)
*
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I3
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K
);
float
ave_time
=
0
;
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
hipGetErrorString
(
hipMemset
(
arg
.
p_c_grid_
,
0
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
sizeof
(
CDataType
)));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
};
if
(
has_main_k0_block_loop
)
{
if
(
kbatch
==
1
)
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
Block2CTileMap
>
,
true
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2
<
GridwiseGemmAtomicAdd
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
Block2CTileMap
>
,
true
>
;
Run
(
kernel
);
}
}
else
{
if
(
kbatch
==
1
)
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
Block2CTileMap
>
,
false
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r4r2
<
GridwiseGemmAtomicAdd
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
DeviceGemmXdlSplitKCShuffleSmallGemm
::
Block2CTileMap
>
,
false
>
;
Run
(
kernel
);
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
index_t
KBatch
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
,
KBatch
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
ck
::
index_t
KBatch
=
1
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
,
KBatch
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmXdlSplitKCShuffleSmallGemm"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp
View file @
d2640676
...
...
@@ -14,12 +14,12 @@ struct GridwiseGemmPipeline_v2<1>
__host__
__device__
static
constexpr
bool
IsSupported
(
index_t
num_loop
)
{
// TODO: improve applicability
return
num_loop
>
2
;
return
num_loop
>
=
2
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainLoop
(
index_t
num_loop
)
{
return
(
num_loop
/
2
)
>
1
;
return
num_loop
>
2
;
}
template
<
bool
HasMainLoop
,
...
...
include/ck/utility/common_header.hpp
View file @
d2640676
...
...
@@ -48,31 +48,44 @@
#include "amd_xdlops.hpp"
#endif
#define USEING_STATIC_KERNEL
1
#define USEING_STATIC_KERNEL
0
#define MNKB_
16_1152_512
0_8
0
#define MNKB_1
6_5120_384_3 1
#define MNKB_
16_1280_5120
_8
1
#define MNKB_
16_5120_1280_5 1
#define MNKB_0_8
1
#define MNKB_1
_4 0
#define MNKB_
2
_8
0
#define MNKB_
3_5 0
#if MNKB_16_1152_5120_8
#define MNKB_4_5 0
#define MNKB_5_5 0
#if MNKB_0_8
#define M_matrix 16
#define N_matrix 4096
#define K_matrix 12800
#define K_batch 5
#elif MNKB_1_4
#define M_matrix 16
#define N_matrix 4096
#define K_matrix 12800
#define K_batch 5
#elif MNKB_2_8
#define M_matrix 16
#define N_matrix
1152
#define K_matrix
5
120
#define K_batch
8
#elif MNKB_
16_5120_384_3
#define N_matrix
4096
#define K_matrix 12
80
0
#define K_batch
5
#elif MNKB_
3_5
#define M_matrix 16
#define N_matrix
5120
#define K_matrix
384
#define K_batch
4
#elif MNKB_
16_1280_5120_8
#define N_matrix
4096
#define K_matrix
12800
#define K_batch
5
#elif MNKB_
4_5
#define M_matrix 16
#define N_matrix
1280
#define K_matrix
5
120
#define K_batch
8
#elif MNKB_
16_5120_1280
_5
#define N_matrix
4096
#define K_matrix 12
80
0
#define K_batch
5
#elif MNKB_
5
_5
#define M_matrix 16
#define N_matrix
5120
#define K_matrix 1280
#define N_matrix
4096
#define K_matrix 1280
0
#define K_batch 5
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment